Advances in the Pharmaceutical Industry Have Shaped Particle Sizing Technology - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Advances in the Pharmaceutical Industry Have Shaped Particle Sizing Technology


Pharmaceutical Technology Europe
Volume 26, Issue 8, pp. 44
PharmTech Europe 25th Anniversary
DSGpro/Getty Images;
Art direction: Dan Ward

From QC to QbD and Beyond

Analytical technologies and bio/pharmaceutical process development have advanced in parallel through necessity and innovation.

The pharmaceutical industry is an exacting consumer of analytical technology, requiring techniques that deliver the data required to enable a knowledge-based approach to product development and to manage the risk of transfer of new products into manufacturing. The adoption of quality by design (QbD) and process analytical technology (PAT) has encouraged the pharmaceutical industry to embrace and exploit new analytical approaches.

The importance of particle size information throughout the pharmaceutical lifecycle means that the evolution of particle sizing techniques has closely tracked these advances. Today, a diverse range of particle sizing solutions is available, from techniques for the characterisation of complex formulations through to online PAT tools for real-time measurement.
QbD is based on the principle that consistent product quality can be better achieved through complete product and process understanding, rather than through fixed point sequential or end-stage quality control (QC). Simplifying the application of QbD has been a primary driver for analytical instrumentation developers. More generally, the bigger trend has been to adapt and develop technology to deliver more detailed information or to provide the same information in a more timely way.

Pharmaceutical Technology Europe
25th Anniversary Issue


Advances in the Pharmaceutical Industry Have Shaped Particle Sizing Technology (Expanded Coverage

Innovations and Future Trends in HPLC Column Technology

The advancement of particle size analysis
Laser diffraction particle sizing is a good example of an analytical technique that has successfully matured from specialist R&D procedure to a routine QC task, and then to online implementation.

Advances in software and hardware design have enabled the optimisation of laser diffraction instrumentation for the laboratory to the point where particle size measurements over a size range encompassing most pharmaceutical actives, excipients and intermediates can be achieved in under a minute. Smart software and analysis capabilities ease the burden of method development, validation and transfer.
PAT, in the form of in-line laser diffraction particle sizing systems, enable real time data capture at a speed that is sufficiently fast to track even rapidly changing processes and open up a route to automated monitoring and/or control at the commercial scale. The application of full process automation for particle size control is, as yet, in its infancy within the pharmaceutical industry, but this shaping of laser diffraction for optimal application at every stage of the pharmaceutical lifecycle provides a powerful example of the symbiosis between the pharmaceutical and analytical instrumentation industries.

While the past few decades have seen laser diffraction mature in its application, there has been a time of rapid innovation in the other areas of particle characterisation. The commercial availability of automated imaging systems has substantially reduced the time taken to obtain statistically relevant particle shape information. Automated imaging has been successfully combined with spectroscopy to deliver component-specific particulate data. Techniques such as morphologically directed Raman spectroscopy enable the measurement of the particle size and shape of discrete chemical entities within multicomponent formulations. These capabilities are now being applied to better understand blending processes, and also to support the demonstration of bioequivalence within generic-drug applications.

The future of pharmaceutical analysis
New challenges likely to shape both the analytical instrumentation and pharmaceutical industries include the adoption of QbD principles in the development of robust analytical methods. The success of analytical QbD (AQbD) will depend on instrumentation providers developing tools that allow operators to rapidly explore the operating region for an analysis, to ensure robust and reliable data are achieved every time.

A progressive shift towards biopharmaceuticals, as opposed to small molecule drugs brings new, unique challenges in terms of developing the analytical technology needed to generate appropriate biophysical and biochemical data during pre-formulation, formulation and QC testing of these products.

Into the future, mutually beneficial collaboration between the pharmaceutical and analytical instrumentation industries looks certain to continue, to ensure new challenges are efficiently met. By sharing information with analytical technology providers, the pharmaceutical industry will prompt the agile development approaches required to commercialize new analytical techniques that fully meet its evolving needs.

About the Authors
Paul Davies is global business manager and Paul Kippax is pharmaceutical portfolio manager, both for Malvern Instruments.

 

ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
30%
Oversee medical treatment of patients in the US.
9%
Provide treatment for patients globally.
8%
All of the above.
45%
No government involvement in patient treatment or drug development.
8%
Jim Miller Outsourcing Outlook Jim MillerCMO Industry Thins Out
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerFluorination Remains Key Challenge in API Synthesis
Marilyn E. Morris Guest EditorialMarilyn E. MorrisBolstering Graduate Education and Research Programs
Jill Wechsler Regulatory Watch Jill Wechsler Biopharma Manufacturers Respond to Ebola Crisis
Sean Milmo European Regulatory WatchSean MilmoHarmonizing Marketing Approval of Generic Drugs in Europe
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
FDA Readies Quality Metrics Measures
New FDA Team to Spur Modern Drug Manufacturing
From Generics to Supergenerics
Source: Pharmaceutical Technology Europe,
Click here