X-ray Microtomography of Solid Dosage Forms - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

X-ray Microtomography of Solid Dosage Forms

Pharmaceutical scientists have long sought the ability to see inside the solid dosage forms they produce to determine their products' structural features and to better understand their mode of action. Previous studies have used various techniques for visualizing the internal structure of solid dosage forms, including 1H NMR imaging (1), confocal microscopy (2), and conventional microscopy (optical and electron) combined with mechanical slicing of samples (i.e., microtoming) (3). One drawback of several current techniques is their invasive nature that can destroy the sample and prevent any further testing. Another is the techniques' limited penetration and resolution. Thus, it is probably fair to say that the ideal experimental approach for the three-dimensional structural imaging of pharmaceutical dosage forms has not yet been realized.


Figure 1: Schematic of X-ray microtomography instrument (I0 = incident beam, ItMay In the Field section5 = transmitted beam).
X-ray microtomography is a relatively new approach to imaging the internal structure of solid dosage forms. This technique has been widely used for the in vivo imaging of plants, insects, animals, and humans. X-ray microtomography is a nondestructive technique that has a high penetration ability and provides a reasonable level of resolution (~5–20 μm).


Figure 2: Conventional bilayer tablet structure.
Principles of X-ray microtomography The X-ray microtomography approach used in this work is an extension of the computer aided tomography (CAT) medical imaging technique commonly used in hospitals. X-rays are directed from a high-power source toward a sample, and a detector on the opposite side of the sample measures the intensity of the transmitted X-rays (see Figure 1). A two-dimensional "shadow" image is produced by accurately rastering the X-ray beam across the sample. The sample then is carefully moved (usually rotated) relative to the X-ray beam, and the process is repeated to produce additional two-dimensional images from various view points. Using a sophisticated Fourier transform algorithm, the two-dimensional images then are combined to generate a complete three-dimensional map of the sample.


Figure 3: Cross section of a fast-dissolving tablet manufactured by lyophilization.
The intensity of the X-rays reaching the detector is controlled by the sample path length and the X-ray attenuation coefficient of the material that it encounters on that path (4). The longer the path length and the greater the attenuation coefficient of the material (see http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html ), the greater the number of diffraction and scattering events, thereby weakening the X-ray beam that reaches the detector. The varying levels of signal intensity provide a gray-scale in the images from which information about the density, thickness, and attenuation properties of the sample can be obtained. Very dense or thick regions and areas that contain heavy elements (e.g., sodium, chlorine, or iron) will generally create the most contrast in the final images. In very simple terms, X-ray microtomography can be thought of as creating a three-dimensional map of the relative atomic density of the sample under evaluation.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerRelationship-building at Top of Mind for Clients
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerRisk Reduction Top Driver for Biopharmaceutical Raw Material Development
Jill Wechsler Regulatory Watch Jill Wechsler Changes and Challenges for Generic Drugs
Faiz Kermaini Industry Insider Faiz KermainiNo Signs of a Slowdown in Mergers
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy

Click here