A PAT Solution for Automated Mill Control - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

A PAT Solution for Automated Mill Control
The authors describe the implementation of an on-line particle-size analyzer on an active pharmaceutical ingredient milling operation at a commercial site.


Pharmaceutical Technology
Volume 34, Issue 1

Quality by design (QbD) encourages the pharmaceutical industry to gain a better understanding of the sources of risk and variability inherent in product manufacture. Effective process analytical technology (PAT) plays an important role in QbD because it enables efficient information gathering at the development stage and offers opportunities for improved process control. An optimal PAT solution provides reliable and timely measurement of a critical variable in a cost-effective manner.

The particle-size distribution of an active pharmaceutical ingredient (API) is often a critical quality attribute that can impact not only drug-product performance, dissolution, and content uniformity, but also the manufacturability of drug product by such issues as flowability and segregation. An integral part of new product development, therefore, is to determine the appropriate range for API particle-size distribution based on drug-product performance. Typically, API particle size is controlled within this range through the milling operation.

Batch API milling with off-line analysis


Figure 1: Image of a comminutor mill with the Insitec on-line particle-size analyzer installed. (FIGURES ARE COURTESY OF AUTHORS)
Batch milling is used widely during API manufacturing to reduce particle size to an acceptable range to meet the defined specification. Figure 1 shows a comminutor mill setup, commonly used in API manufacturing for a milling application.

In this mill, material entering via the feed throat is broken up by the rotating blades, which apply a cutting and impacting action. Particles within a defined size range exit via the screen, which retains oversized material in the mill for further comminution. Blade profile and screen specification both influence the size of the exiting particles, but from an operational standpoint, rotor speed is the principal control variable.

With only off-line analysis in place, controlling the API particle size within an acceptable range is an iterative process. Initially, a small quantity of material (1 to 5 kg, for example) is milled at a speed selected on the basis of historical experience. Measuring the particle size of the resulting material in the laboratory determines acceptability. If the milled powder meets the specification for the product, the remainder of the batch is processed under these conditions. If not, mill speed is altered, and another small quantity of material is milled and tested. This process continues until acceptable conditions are established. Because of batch-to-batch variability, this procedure is repeated for every batch in a campaign.

This iterative process is time consuming and wastes material. Equally important, the particle size of the milled powder can be quite variable. The process is fixed rather than responsive to the properties of the feed, so, for example, if the feed batch is segregated and/or the test sample is not truly representative, there is an impact on final-product particle-size distribution. Final testing only verifies that the average properties of the batch are acceptable and reveals no information about manufacturing consistency. It is therefore common to produce material with a relatively broad particle-size distribution, which maybe detrimental to steady downstream operation.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here