Single-Use High Capacity Membrane Chromatography - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Single-Use High Capacity Membrane Chromatography
Debottlenecking downstream mAb purification.

Pharmaceutical Technology
Volume 36, Issue 2, pp. 30

With ever increasing titers, column chromatography has become a bottleneck in the downstream processing of monoclonal antibodies (mAbs) and a major barrier in the development of a truly disposable single-use mAb manufacturing facility. Recent developments in high- capacity membrane chromatography have shown the potential to provide disposable chromatographic solutions. There are several reasons to consider single-use purification. Emerging trends in the biopharmaceutical industry are for smaller, flexible, and multiproduct facilities that lead to lower manufacturing costs. These trends have emerged because of increased bioreactor titers, smaller market size for new biopharmaceuticals, and the high cost of a dedicated facility. Single-use purification allows an organization to capitalize on these emerging trends.

Protein A as a capture step

Protein A has traditionally been the most widely used capture step in the purification of mAbs. It yields a high purity material (> 99.5%) that only needs polishing steps to remove aggregates, residual host-cell protein (HCP), DNA, virus, and leached protein A. Its disadvantages are that it is not single-use ($ 9,000–12,000 per liter), needs an enzyme-linked immunosorbent assay (i.e., protein A) release assay, and requires a fireproof facility. In an effort to overcome protein A's disadvantages, several companies have introduced cation-exchange chromatography (i.e., chromatography beads) as a substitute capture step with good results.

Cation-exchange capture

Researchers at the biopharmaceutical company Percivia have demonstrated efficient capture (> 90 mg mAb/mL of resin), yield (> 95%) and purity (95% reduction in HCP) with the use of a cation-exchange resin, GigaCap S 650-M (Tosoh Bioscience) (1). Abbott Laboratories has used a cation-exchange resin for a capture step for its drug Humira (adalimumab), and the biopharmaceutical company Medarex also has used a cation exchange resin for capture of a mAb (1–2). In an optimization study, Genentech (now part of Roche) used cation-exchange capture (SP-Sepharose FF, Pharmacia) followed by hydrophobic interaction chromatography (HIC) and strong anion-exchange chromatography to reduce HCP to traditional levels achieved with protein A (3).

Single-use high-capacity membrane chromatography

Two recent studies have used single-use high-capacity cation (weak C) exchange membranes as a capture step for mAbs. The advantages of these membranes are high dynamic binding capacities, short processing times, low cost per membrane volume, and single use. Lawton has optimized the capture step for a high-capacity cation exchange membrane (Advective Flow Chromatography "C," Natrix Separations) and obtained greater than 75 mg mAb/mL membrane (10% dynamic capacity) with > 95% purity and removal of aggregates (4). Kuczewski et al. have described a complete single-use purification process using the same high capacity cation exchange membrane as Lawton (Advective Flow Chromatography "C," Natrix Separations) (4, 5). In its process, Percivia obtained bindings of 55 mg/mL membrane, yields > 95%, HCP reductions of > 96%, and some removal of aggregates. Further membrane polishing steps, consisting of anion-exchange flow-through (Chromasorb, Millipore) and HIC flow-through (Sartobind Phenyl, Sartorious Stedim Biotech) reduced HCP to less than 50 ppm and aggregates to less than 0.5%, which was in an acceptable range.


Recent results using high-capacity membrane chromatography sets the stage for single-use purification of mAbs. Combined with single-use bioreactors, flexible multiproduct facilities can be built for the low-cost manufacture of the next generation of mAbs.

Carl W. Lawton, PhD, is director of the Massachusetts Biomanufacturing Center at the University of Massachusetts, Lowell,


1. B Lain, M. Cacciuttolo, and G. Zarbis-Papastoitsis, Bioprocess Int. 7 (5), 26–34 (2009).

2. G. Ferreira et al., BioPharm. Int. 20 (5) 32–43 (2007).

3. D. Follman and R. Fahrner, J. Chromatogr. A, 1024 (1–2), 79–85 (2004).

4. C. Lawton, presentation at the BioProcess International Conference (Long Beach, CA, Nov. 2011).

5. M. Kuczewski et al., Biotechnol. J. 6 (1), 56–65 (2011).


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here