Applying Continuous-Flow Pasteurization and Sterilization Processes - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Applying Continuous-Flow Pasteurization and Sterilization Processes
High-temperature, short-time (HTST) pasteurization and ultra-high temperature (UHT) sterilization have potential use for continuous manufacturing of bio/pharmaceuticals.


Pharmaceutical Technology
Volume 37, Issue 5, pp. s28-s31

High-temperature, short-time (HTST) pasteurization and ultra-high temperature (UHT) sterilization are continuous-flow thermal processes that have been established and highly refined in other industries for many years. Their precision and minimal impact enable the manufacture of products that cannot be made using batch technologies. HTST and UHT are traditionally used for heat-sensitive products. As continuous-flow processes, they are effective against vegetative cells, viruses, and heat-stable endospores. These characteristics and their continuous-flow nature make them potentially useful as part of the trend toward methods of continuous manufacturing of bio/pharmaceuticals.


Microthermics, Inc.
Technologies frequently evolve separately, often independently, in unrelated industries and transfer between them. This transfer is often how industries and technologies advance and take significant steps forward. Identifying a technology that is proven, highly refined, and fully supported industrially and regulatorily, however, is less common. This is the case for high-temperature, short-time (HTST) pasteurization and ultra-high temperature (UHT) sterilization. HTST and UHT are continuous flow, thermal processes that have been used to pasteurize and sterilize liquids (e.g., foods) for more than 60 years. The processes have been developed as tightly controlled systems and refined to reliably produce high quality products at low cost. HTST and UHT have been optimized to reach high assurance levels for inactivation of vegetative cells, viruses, and heat-stable endospores, all while retaining quality that could not be maintained using batch processes, such as autoclaving.

HTST and UHT in the food industry

It seems somehow concerning to use a process that has evolved for food products, such as milk and juices, and use it for highly refined pharmaceuticals, but let’s consider the fundamentals. The chemical-reaction kinetics that describe how and why these processes inactivate bacteria but retain the quality in a biological fluid (e.g., milk) are the same as in any other biological fluid. Commercially, these processes are well established and used for products ranging from juices to baby food and even products as sensitive as liquid whole egg. These processes have annual capacities measured in hundreds of billions of packages per year. Commercial equipment for HTST and UHT processes commonly operate at flow rates ranging from roughly 5 gallons to more than 100 gallons per minute. Commercial capacities, however, do not lend themselves to the batch sizes and rapid cycles of research and development. The need to conduct thorough research and to optimize treatments (e.g., hold time, temperature, and heat transfer) for different products has triggered the development of miniaturized research equipment and experimental methods for this purpose. These tools have enabled R&D professionals to address potential manufacturing issues early and avoid losses and costly problems while also helping these processes to become better understood. Optimization of these processes has led to development of a wide assortment of time and temperature treatments as well as highly refined tools to test products and deliver these treatments. As a consequence, small-capacity systems have been developed for lower flow rates, bringing the benefits of HTST pasteurization and UHT sterilization to the high-value, low-volume materials of pharmaceuticals.

Sterilization in continuous manufacturing

Continuous manufacturing has been described as a manufacturing breakthrough and as the method of the future by Konstatine Konstantinov, vice-president of commercial process development at Genzyme (now part of Sanofi), and Robert Bradway, chairman and CEO of Amgen (1, 2). The trend toward using this method is increasing as manufacturers of bio/pharmaceuticals strive to meet growing demand, reduce floor space, improve manufacturing flexibility and capacity, and reduce costs. The adoption of continuous manufacturing for biopharmaceuticals emphasizes the need to inactivate microorganisms continuously at rates consistent with these new processes. The adoption of HTST and UHT continuous processing and surrounding technologies is a natural fit. Early adopters in the biotechnology and biopharmaceutical industries have begun to deploy these processes. The question remains, however, what are the reasons to adopt HTST and UHT in these industries? Are their benefits simply a function of the continuous process or are there additional benefits that make HTST and UHT even more desirable?

Benefits of HTST and UHT


Figure 1: Flow diagram for continuous-flow thermal processes.
The benefits of HTST and UHT processes result from their continuous flow nature and their use of different and more highly refined time and temperature conditions. To understand their benefits, it is useful to consider an example process like that shown in Figure 1. The product is pumped continuously through the process at constant flow and is heated to the process temperature under steady-state conditions. It flows through the hold tube, which is of sufficient length to ensure that the product is hot for the time needed for the required lethality, before it is cooled as it exits the system. The result is that the product experiences a controlled, well-defined time–temperature exposure. This time–temperature history (TTH), conceptually shown in Figure 2, is usually less than two minutes from start to finish. Although there are relatively few rules linking the terms “pasteurization” or “sterilization” to specific temperatures, for the sake of this discussion, pasteurization is usually conducted at hold-tube temperatures between 70 C and 121 C. Sterilization hold temperatures range from 128 C to 150 C. Hold times most commonly range from 2 to 30 seconds.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
23%
Oversee medical treatment of patients in the US.
14%
Provide treatment for patients globally.
7%
All of the above.
47%
No government involvement in patient treatment or drug development.
9%
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here