Measuring API Particle Size Distribution - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Measuring API Particle Size Distribution
Visual mapping can provide a particle-size distribution estimate.


Pharmaceutical Technology
Volume 37, Issue 3, pp. 32

Q. Is there a clever way to directly measure drug/API particle size distribution in a tablet blend/granulation, assuming API has very low aqueous solubility and the excipients are in a mixed (either water-soluble or insoluble) state?


Ann Newman, PhD
A. One method that I have used to directly estimate/measure the particle size of API particles in tablets, which would also work for blends and granulations, is mapping. By picking a peak unique to the API, a visual distribution of the API can be obtained. In order to get a particle size distribution, you would need to extend the analysis by counting the dimensions for a relevant number of particles. Many times a simple visual assessment is enough to easily see differences based on parameters such as starting material or processing.

Mapping can be performed using a variety of techniques including infrared (IR), Raman, energy dispersive x-ray (EDX), and even X-ray powder diffraction (XRPD). EDX analysis, performed in a scanning electron microscope (SEM), can be used for API molecules that contain elements amenable to EDX (usually above carbon in the periodic table). In my project, the API contained a chloride ion that was not present in any of the excipients. By mapping the presence of the chloride, the API particle size present in two tablets were directly compared and related to dissolution data to help explain a slower dissolution rate. For spectral mapping, an API peak is needed that does not overlap with the excipients in the formulation. The API peak is then used to map the presence of the API in the sample. A visual map is obtained that can be used to estimate the particle size of the API visually or an additional step of measuring the size of relevant areas can be performed. The limitation will be the magnification of the microscope used; smaller particles will require higher magnifications. Resolution of the technique will also play a role and can be controlled by the instrument source and the experimental parameters. Higher resolution will require smaller analysis steps and longer scan times. These factors will need to be considered when you set up your experiment to determine the amount of time and effort that is needed for the information you want to obtain.

Ann Newman, PhD, is a principal consultant for Patheon.

ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
27%
Breakthrough designations
9%
Protecting the supply chain
41%
Expedited reviews of drug submissions
9%
More stakeholder involvement
14%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
Source: Pharmaceutical Technology,
Click here