Development of Orally Disintegrating Tablets Based on a New Excipient - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Development of Orally Disintegrating Tablets Based on a New Excipient
The authors examine the effectiveness of an excipient comprised of mannitol, polyvinyl acetate, and crospovidone using model actives loperamide hydrogen chloride and caffeine.


Pharmaceutical Technology
Volume 32, Issue 11, pp. 66-70


SCOTT KLEINMAN/GETTY IMAGES
There is a strong trend in the pharmaceutical industry toward developing orally disintegrating tablets because they have various benefits for the patient compared with regular tablets. These benefits include quick onset of action, ease of swallowing, and the ability to take the tablets without water (1). To achieve these benefits, highly functional excipients are required.


Figure 1: Property triangle of fast dispersible excipients. (ALL FIGURES ARE COURTESY OF BASF SE.)
Rapid dissolution, smooth mouth feeling, and excellent compressibility are three properties of fast dispersible excipients that are extremely important (see Figure 1). No single materials meet all these requirements, so Ludiflash (BASF SE, Ludwigshafen, Germany) was developed. This formulated mixture of mannitol, polyvinyl acetate, and crospovidone is a highly functional material that can be compressed directly and does not need complex and time-consuming processes such as mixer granulation, fluidized bed granulation, roller compaction, or freeze drying.

Aim of the study

The goal of this study was to investigate how orally disintegrating tablets containing the model actives loperamide hydrogen chloride (HCL) and caffeine can be developed. The effect of additional disintegrants and the impact of compression speed and tableting force were studied applying a direct compression process.

Methods


Table I: Tablet composition.
Materials. The following materials were used in the study: a fast dispersible excipient (Ludiflash, BASF SE) based on mannitol, polyvinyl acetate, and crospovidone; loperamide HCl (Selectchemie, Zurich, Switzerland); caffeine fine powder (BASF SE); sodium stearyl fumarate (Pruv, J. Rettenmaier & Söhne GmbH + Co. KG, Rosenberg, Germany); and crospovidone (Kollidon CL-SF, BASF SE).


Table II: Compression and tablet data from a compression force study at 40 rpm .
Experimental methods. Various formulations of the active ingredients and excipients were compressed into tablets (see Table I). All ingredients were blended in a Turbula blender (Bachofen, Uster, Switzerland) for 10 min and tableted on a rotary press (Korsch PH 106, Korsch AG, Berlin, Germany) into flat tablets of 8 mm (loperamide HCl), respectively, 10 mm diameter (caffeine) with a bevelled edge. The relative humidity (r. h.) inside the tablet press was adjusted < 20% r.h. The tableting speed was varied from 20 to 60 rpm and compression force from 1 to 16 kN.

Results


Figure 2: Hardness, friability, and disintegration as a function of compressed force using loperamide tablets with 0% Kollidon CLSF. Kollidon CL-SF is a registered trademark of BASF SE. (ALL FIGURES ARE COURTESY OF BASF SE.)
The direct compression process was applicable to both model drugs with good results. The compression force study revealed that for loperamide HCl tablets, 3–5 kN (60–110 MPa) should be applied because in this range disintegrating tablets of sufficient hardness and low friability could be manufactured. A higher tableting pressure strongly reduces the porosity of the tablets and results in longer disintegration times (see Table II, Figures 2 and 3).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
24%
Oversee medical treatment of patients in the US.
12%
Provide treatment for patients globally.
10%
All of the above.
44%
No government involvement in patient treatment or drug development.
10%
Jim Miller Outsourcing Outlook Jim MillerCMO Industry Thins Out
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerFluorination Remains Key Challenge in API Synthesis
Marilyn E. Morris Guest EditorialMarilyn E. MorrisBolstering Graduate Education and Research Programs
Jill Wechsler Regulatory Watch Jill Wechsler Biopharma Manufacturers Respond to Ebola Crisis
Sean Milmo European Regulatory WatchSean MilmoHarmonizing Marketing Approval of Generic Drugs in Europe
FDA Reorganization to Promote Drug Quality
FDA Readies Quality Metrics Measures
New FDA Team to Spur Modern Drug Manufacturing
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Source: Pharmaceutical Technology,
Click here