Partnering in Antibody Drug Conjugates - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Partnering in Antibody Drug Conjugates
The promise of antibody drug conjugates is creating a network of partners among large pharma companies and specialized players.


Pharmaceutical Technology
Volume 36, Issue 11, pp. 50-51


Patricia Van Arnum
Antibody drug conjugates (ADCs) represent a niche but important area in biotherapeutic drug development. ADCs, which consist of a monoclonal antibody (mAb) chemically linked to a small-molecule therapeutic, are a promising modality for certain therapeutic areas such as oncology. ADCs are attracting the interest of both small and large pharmaceutical companies in their drug-development efforts as well as contract manufacturers specializing in high-potency API manufacturing and related conjugation services.

Evaluating the opportunities

In August 2011, FDA approved Adcetris (brentuximab vedotin), codeveloped by Seattle Genetics and Millennium Pharmaceuticals (now part of Takeda Pharmaceutical), making it only the second ADC approved by FDA. Adcetris was approved for treating Hodgkin's lymphoma and systemic anaplastic large-cell lymphoma. Adcetris consists of three parts: the chimeric IgG1 antibody cAC10, specific for human CD30, the microtubule-disrupting agent monomethyl auristatin E (MMAE), and a protease-cleavable linker that covalently attaches MMAE to cAC10 (1, 2). Before the approval of Adcetris, the only other ADC approved by FDA was Mylotarg (gemtuzumab ozogamicin), approved more than 10 years ago in 2000. The drug, an anti-CD33 mAb conjugated to the cytotoxin calicheamicin, was developed by Wyeth (now part of Pfizer) and was granted accelerated approval in 2000 but was voluntarily withdrawn by Pfizer in 2010 because a required Phase III trial failed to demonstrate a survival advantage for Mylotarg plus chemotherapy compared with chemotherapy alone (1).


ISTOCKPHOTO/THINKSTOCK IMAGES
Other ADCs are advancing. Roche's Trastuzumab emtansine (T-DM1) is an ADC in Phase III development. The drug combines trastuzumab, (Herceptin), which targets human epidermal growth factor receptor 2 (HER2) receptors in breast and stomach cancer, with a maytansine derivative DM1, a small-molecule cytotoxin that binds to tubulin to prevent microtubule formation, through a nonreducible bis-maleimido-trixyethylene glycol linker (1, 2). Trastuzumab was developed by Genentech (now part of Roche) and was approved by FDA in 1998 for use in women with metastatic breast cancer who have tumors that overexpress the HER2 protein. The maytansine derivative DM1 and linking technology were developed by ImmunoGen (1). Genentech submitted a biologics license application for trastuzumab emtansine to FDA for use in people with HER2-positive, unresectable locally advanced or metastatic breast cancer, and Roche submitted a marketing authorization application to EMA for the same indication. Roche presented data showing encouraging efficacy, safety and quality of life results for T–DM1 at the American Society of Clinical Oncology annual conference in June 2012. Roche has a total of nine ADCs in its development pipeline. It includes RG7593, a humanized IgG1 anti-CD22 monoclonal antibody (anti-CD22) conjugated to an antimitotic agent in Phase I development.

Pfizer also is advancing ADCs. Its lead ADC product is inotuzumab ozogamicin, consisting of a mAb targeting CD22, a cell-surface antigen expressed on approximately 90% of B-cell malignancies, linked to a cytotoxic agent. As of March 2011, Pfizer had 10 ADC programs in preclinical development (3).

In October 2012, the biotechnology company Seattle Genetics expanded its ADC collaboration with Abbott. Under the expanded deal, Abbott will pay an upfront fee of $25 million for rights to use Seattle Genetics' auristatin-based ADC technology with antibodies to additional oncology targets. Seattle Genetics's proprietary technology uses synthetic cytotoxic agents, such as monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF), and stable linker systems that attach these cytotoxic agents to the antibody. In addition in its deal with Abbott, Seattle Genetics may receive up to $220 million in potential milestone payments per additional target upon achieving predetermined development and commercial objectives as well as mid-to-high single-digit royalties on worldwide net sales of any resulting products under the multitarget collaboration. Seattle also is partnered with Genentech for ADC development and with Takeda for Adcetris.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerRelationship-building at Top of Mind for Clients
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerRisk Reduction Top Driver for Biopharmaceutical Raw Material Development
Jill Wechsler Regulatory Watch Jill Wechsler Changes and Challenges for Generic Drugs
Faiz Kermaini Industry Insider Faiz KermainiNo Signs of a Slowdown in Mergers
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here