Using Excipients With Biologics - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Using Excipients With Biologics

Pharmaceutical Technology Europe
Volume 23, Issue 1

Sophie Chesnoy
We generally consider biologics as large molecular weight molecules such as proteins, peptides and plasmid DNAs, which are primarily formulated for parenteral administration — the preferred route of administration for these biomolecules. For these larger molecular weight molecules, salts, surfactants, glycerol and/or polyols are the most commonly used excipients. However, there are some smaller biomolecules that have been formulated for oral use, for example, Aventis' hormone analogue drug desmopressin acetate.1

Most development-stage and promising, recently marketed biologicals are monoclonal antibodies, which again have high molecular weights and therefore are unlikely to be good candidates for non invasive delivery. Thus they are currently formulated for injectable administration.

Based on our experience, the desired route of administration will drive the search for novel excipients. A number of different administration routes are available for biologicals, but each has challenges that must be overcome.

Oral administration

Oral administration requires delivery systems that prevent degradation and enhance the absorption of biologics in the gastrointestinal tract. Enteric coatings and capsules can be used to protect biologics but for the biggest molecular sizes, their oral bioavailabilty still remains very low and thus oral delivery is very challenging.1

Delivery through the skin

This method of drug delivery bypasses the gastrointestinal tract; however, the skin is a strong barrier that prevents the passage of big molecules. Encapsulation of biomolecules with the use of nanotechnologies can enhance their transdermal passage. Transdermal iontophoresis is one such technique, based on active permeation using an electric field, which has shown promise in the controlled and enhanced delivery of peptides and proteins across the skin.

Nasal delivery

This is a non-invasive method that avoids first pass metabolism in the liver and provides fast exposure to systemic circulation. The key challenge here is to obtain a stabilised solution or suspension of biomolecules. Further, because of the large size of these molecules, their bioavailability through the nasal mucosa can be very poor and would require the use of permeation enhancers.1

The ideal excipients should be the ones that are going to stabilise a high concentration of proteins in water. The search for new penetration enhancer with very good tolerance could be another way to improve their bioavailability.

With all administration routes, the most challenging issues are:

  • overcoming the physical and chemical instabilities of biomolecules in contact with biological fluids or in liquid forms
  • efficiently delivering/targeting biomolecules.

The most recent research studies have attempted to address these two issues by designing innovative excipient technologies. Some of them were aimed at finding physical ways to protect the biologics from aggregation and precipitation using enteric-coated capsules or tablets,2 thus protecting the biomolecule until it reaches the target site.

Another set of technologies use chemical means to extend the lifecycle and/or the transmembrane delivery of the biomolecule once administered. This works by chemically linking the biomolecule to the excipient and therefore the resulting compound could be considered as a prodrug. For instance, oligonucleotides have been conjugated to cholesterol or a fatty acid to enhance their transmembrane delivery.3

The stability of proteins can be enhanced by chemically coupling a PEG molecule to the protein.1 In this scenario, the protein's surface is modified in order to prevent the stimulation of the immune system. Enzon Pharmaceuticals' Adagen was the first pegylated protein to gain FDA approval in 1990.1 Excipients can also enhance biomolecule stability by associating them with protease inhibitors.

Other solutions, such as encapsulation and nanotechnologies, are also of great interest for improving the stability and effective delivery of biomolecules. These solutions can protect biomolecules from proteolytic cleavage, as well enhance their transdermal passage or facilitate long systemic circulation.

Ipsen and Debiopharm have recently launched a 6 month peptide sustained delivery system using lactide / glycolide copolymers under the name of Decapeptyl LP (triptorelin LHRH agonist). This innovation allows only two annual injections of this peptide. This is a marked improvement on the original "long acting release" dosage form, which gradually released peptide over the course of 3 months.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology Europe,
Click here