Using Excipients With Biologics - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Using Excipients With Biologics

Pharmaceutical Technology Europe
Volume 23, Issue 1

Sophie Chesnoy
We generally consider biologics as large molecular weight molecules such as proteins, peptides and plasmid DNAs, which are primarily formulated for parenteral administration — the preferred route of administration for these biomolecules. For these larger molecular weight molecules, salts, surfactants, glycerol and/or polyols are the most commonly used excipients. However, there are some smaller biomolecules that have been formulated for oral use, for example, Aventis' hormone analogue drug desmopressin acetate.1

Most development-stage and promising, recently marketed biologicals are monoclonal antibodies, which again have high molecular weights and therefore are unlikely to be good candidates for non invasive delivery. Thus they are currently formulated for injectable administration.

Based on our experience, the desired route of administration will drive the search for novel excipients. A number of different administration routes are available for biologicals, but each has challenges that must be overcome.

Oral administration

Oral administration requires delivery systems that prevent degradation and enhance the absorption of biologics in the gastrointestinal tract. Enteric coatings and capsules can be used to protect biologics but for the biggest molecular sizes, their oral bioavailabilty still remains very low and thus oral delivery is very challenging.1

Delivery through the skin

This method of drug delivery bypasses the gastrointestinal tract; however, the skin is a strong barrier that prevents the passage of big molecules. Encapsulation of biomolecules with the use of nanotechnologies can enhance their transdermal passage. Transdermal iontophoresis is one such technique, based on active permeation using an electric field, which has shown promise in the controlled and enhanced delivery of peptides and proteins across the skin.

Nasal delivery

This is a non-invasive method that avoids first pass metabolism in the liver and provides fast exposure to systemic circulation. The key challenge here is to obtain a stabilised solution or suspension of biomolecules. Further, because of the large size of these molecules, their bioavailability through the nasal mucosa can be very poor and would require the use of permeation enhancers.1

The ideal excipients should be the ones that are going to stabilise a high concentration of proteins in water. The search for new penetration enhancer with very good tolerance could be another way to improve their bioavailability.

With all administration routes, the most challenging issues are:

  • overcoming the physical and chemical instabilities of biomolecules in contact with biological fluids or in liquid forms
  • efficiently delivering/targeting biomolecules.

The most recent research studies have attempted to address these two issues by designing innovative excipient technologies. Some of them were aimed at finding physical ways to protect the biologics from aggregation and precipitation using enteric-coated capsules or tablets,2 thus protecting the biomolecule until it reaches the target site.

Another set of technologies use chemical means to extend the lifecycle and/or the transmembrane delivery of the biomolecule once administered. This works by chemically linking the biomolecule to the excipient and therefore the resulting compound could be considered as a prodrug. For instance, oligonucleotides have been conjugated to cholesterol or a fatty acid to enhance their transmembrane delivery.3

The stability of proteins can be enhanced by chemically coupling a PEG molecule to the protein.1 In this scenario, the protein's surface is modified in order to prevent the stimulation of the immune system. Enzon Pharmaceuticals' Adagen was the first pegylated protein to gain FDA approval in 1990.1 Excipients can also enhance biomolecule stability by associating them with protease inhibitors.

Other solutions, such as encapsulation and nanotechnologies, are also of great interest for improving the stability and effective delivery of biomolecules. These solutions can protect biomolecules from proteolytic cleavage, as well enhance their transdermal passage or facilitate long systemic circulation.

Ipsen and Debiopharm have recently launched a 6 month peptide sustained delivery system using lactide / glycolide copolymers under the name of Decapeptyl LP (triptorelin LHRH agonist). This innovation allows only two annual injections of this peptide. This is a marked improvement on the original "long acting release" dosage form, which gradually released peptide over the course of 3 months.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology Europe,
Click here