Nanoburrs offer targeted cardiovascular treatment - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Nanoburrs offer targeted cardiovascular treatment


Pharmaceutical Technology Europe

Targeted nanoparticles that can cling to artery walls and slowly release medicine could offer an alternative to drug-releasing stents in some patients with clogged or damaged arteries, according to researchers at the Massachusetts Institute of Technology (MIT) and the Harvard Medical School. The research has been published in a January issue of the Proceedings of the National Academy of Sciences.

Coated with tiny protein fragments that enable them to stick to target proteins, the particles are known as ‘nanoburrs’. The nanoburrs target the basement membrane, which lines the arterial walls and is only exposed when those walls are damaged. According to the researchers, the nanoburrs can release their drug payload over several days and could be used to deliver drugs that target atherosclerosis and other inflammatory cardiovascular diseases.

Two of the researchers, Robert Langer, Professor at the MIT Institute, and Omid Farokhzad, Associate Professor at the Harvard Medical School, have previously developed nanoparticles that seek and destroy tumors. According to a press statement, however, the nanoburrs are the first particles that can target damaged vascular tissues.

Clogged and damaged arteries are usual treated via vascular stents. The nanoburrs could be used alongside these or used in areas not suitable for stents, such as near a fork in the artery.

In a news release issued by the MIT, Uday Kompella, Professor of Pharmaceutical Sciences at the University of Colorado (CO, USA), also explained that the nanoburr’s structure should be easy to manufacture because the targeted peptides are attached to an outer shell and not directly to the drug-carrying core, which would require a more complicated chemical reaction. The design of the nanoburrs also reduces the risk of the nanoparticles bursting and releasing drugs prematurely.

The lead author of the paper also added in the press statement that the particles can be injected intravenously, which would prevent repeated and surgically invasive injections directly into the area that requires treatment.

http://web.mit.edu

ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerRelationship-building at Top of Mind for Clients
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerRisk Reduction Top Driver for Biopharmaceutical Raw Material Development
Jill Wechsler Regulatory Watch Jill Wechsler Changes and Challenges for Generic Drugs
Faiz Kermaini Industry Insider Faiz KermainiNo Signs of a Slowdown in Mergers
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Source: Pharmaceutical Technology Europe,
Click here