Researchers Uncover How a Potent Compound Kills Prostate Cancer Cells - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Researchers Uncover How a Potent Compound Kills Prostate Cancer Cells



One major hallmark of cancer cells is their ability to survive under stressful conditions. A new study spearheaded by researchers at Sanford-Burnham Medical Research Institute reveals how a promising anticancer compound called SMIP004 specifically kills prostate cancer cells by compromising their ability to withstand environmental stress.

The study, recently published in Oncotarget, uncovers novel mechanisms of anticancer activity and could lead to the development of more effective therapies for advanced and hard-to-treat forms of prostate cancer, as well as other types of cancer.

Prostate cancer is the second most common cancer and the second leading cause of cancer-related death among men in the United States. One treatment option for these patients is castration-the chemical or surgical removal of the testes-which reduces the production of the male sex hormone testosterone. This strategy works because prostate cancer cells, at least initially, depend on testosterone for their growth and survival. But many patients eventually develop castration-resistant prostate cancer, in which the cancer cells adapt and become insensitive to hormone deprivation therapy.

In the new study, the researchers found that SMIP004 causes cancer cells to die by interfering with the functioning of mitochondria-structures within cells that are responsible for generating energy and controlling cell growth and death. In a process known as oxidative stress, harmful molecules called reactive oxygen species (ROS) built up within mitochondria, causing the cells to stop replicating and to start dying. Wolf and his team pinpointed the exact molecular signaling pathways underlying SMIP004's effects and identified ROS-mediated activation of the unfolded protein response as the trigger of cancer-cell death.

Through one of the newly identified pathways triggered by oxidative stress, SMIP004 caused a decrease in the number of androgen receptors-proteins within prostate cancer cells that are activated by testosterone. In patients with castration-resistant prostate cancer, cancer cells develop the ability to use low levels of testosterone for survival by increasing the production of androgen receptors. In other words, these cancer cells still depend on androgen receptors for their growth and survival, even though they are less reliant on testosterone itself.

Moreover, the researchers found that SMIP004 strongly inhibited the growth of prostate and breast cancer in mice, underscoring the compound's potential value in treating a range of cancers. All types of cancer cells are exposed to stressful conditions, including high levels of oxidative stress resulting from the activation of cancer-causing genes. SMIP004 increased mitochondrial ROS levels by 40 percent, which was enough to tip these cells over the edge and cause them to die.

Source: Sanford-Burnham Medical Research Institute

ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes

Click here