Evaluating Impurities in Drugs (Part II of III) - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Evaluating Impurities in Drugs (Part II of III)
In Part II of a three-part article, the authors examine impurities from chiral molecules, polymorphic contaminants, and genotoxic impurities.


Pharmaceutical Technology
Volume 36, Issue 3, pp. 58-72


Adam Gault/ OJO Images/Getty Images
The public and the pharmaceutical industry are placing greater attention on impurities in drug as evidenced by the attention given to pharmaceutical impurities in books, journal articles, and national and international guidelines (1–10). The health implications of impurities can be significant because of their potential teratogenic, mutagenic, or carcinogenic effects. Controlling and monitoring impurities in APIs and finished drug products, therefore, is a crucial issue in drug development and manufacturing.

Part I of this article, which appeared in the February 2012 issue of Pharmaeceutical Technology, discussed the various types and sources of impurities with specific case studies (11). This article, Part II, discusses chiral, polymorphic, and genotoxic impurities (12, 13). Part III, to be published in the April 2012 issue of Pharmaceutical Technology, will examine various degradation routes of APIs, impurities arising from API–excipient interaction during formulation, metabolite impurities, various analytical methodologies to measure impurity levels, and measures to control impurities.

Chiral impurities

Impurities can be present in the enantiomers of chiral compounds. Differences in pharmacological and toxicological profiles have been observed with chiral impurities in vivo (14, 15). The significance of stereochemical purity may be illustrated by formoterol, a selective β2-adrenoceptor agonist (16). This compound contains two chiral centers. Initial investigations indicated that the β2-agonist activity resided in the stereoisomer with the (R, R) absolute configuration with a rank order of potency (R, R) > (R, S) > (S, S) > (S, R). Subsequent investigation reported much greater difference with the eudismic ratio R, R/S, S increasing from 50 to 850 when the impurity of the eutomer in the diastereomer decreased from approximately 1.5 % to < 0.1% (17). Similar examples of stereochemical isomers can be found in the stereospecific drugs of the (S)-enantiomer of a-methyldopa, picenadol, (R)-sopromidine, (+)-(S)-apomorphine, and sertraline (18–24).

Another example is asenapine maleate, an antipsychotic belonging to the dibenzo-oxepino pyrroles class. Based on its receptor pharmacology, the efficacy is thought to be mediated by its antagonist activity on dopamine (D)-2 and serotonin (5-HT)–2A receptors (25). Asenapine shows geometric isomerism and is a racemate of (+) and (-) enantiomers. It shows comparable binding affinities, meaning trans-asenapine showed higher affinity at D4 receptors than (+)/cis-asenapine (26).

Differences in pharmacological and toxicological profiles have been observed with chiral impurities in vivo, suggesting that chiral impurities should be monitored carefully. Although development of chiral drugs as single stereoisomers is a preferred approach, consideration must be given to unwanted stereoisomers, which may be present as impurities or degradants in the drug substance or drug product or generated through metabolism in biological systems. Chiral impurities in pharmaceutical samples may occur as side-products of the synthetic process as a result of an inversion of chiral centers due to chemical degradation of the drug substance or both. Similarly, inversion of the chiral center may occur in vivo as a result of metabolism, chemical degradation, or both.

Guidelines on the development of chiral compounds are published by regulatory authorities around the world, but they can be general and leave room for interpretation. The issues involved in chiral drug development are complex, and a coordinated approach among the many R&D groups is necessary. A multidisciplinary approach serves as a guide to the development of chiral compounds by coordinating research efforts in the various phases of development (22–36).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
24%
Oversee medical treatment of patients in the US.
12%
Provide treatment for patients globally.
10%
All of the above.
44%
No government involvement in patient treatment or drug development.
10%
Jim Miller Outsourcing Outlook Jim MillerCMO Industry Thins Out
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerFluorination Remains Key Challenge in API Synthesis
Marilyn E. Morris Guest EditorialMarilyn E. MorrisBolstering Graduate Education and Research Programs
Jill Wechsler Regulatory Watch Jill Wechsler Biopharma Manufacturers Respond to Ebola Crisis
Sean Milmo European Regulatory WatchSean MilmoHarmonizing Marketing Approval of Generic Drugs in Europe
FDA Reorganization to Promote Drug Quality
FDA Readies Quality Metrics Measures
New FDA Team to Spur Modern Drug Manufacturing
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Source: Pharmaceutical Technology,
Click here