The Disintegration and Dissolution of Nabumetone Dispersible Tablets - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

The Disintegration and Dissolution of Nabumetone Dispersible Tablets
Nabumetone was complexed with β-cyclodextrin, and a 23 factorial design was used to prepare dispersible tablets containing the drug or its complex.The authors analyzed the effects of complexation as well as the levels of ammonium bicarbonate and crospovidone on tablet wetting time (WT), disintegration time (DT), and percent dissolution efficiency at 60 min (%DE60).


Pharmaceutical Technology



Photo: Photos.com
Nabumetone is a nonsteroidal anti-inflammatory drug (NSAID) for the treatment of pain and inflammation associated with rheumatoid arthritis and osteoarthritis (1). The incidence of gastrointestinal ulceration associated with nabumetone appears to be lower than for other NSAIDs, suggesting that the drug may be a preferential inhibitor of cyclooxygenase-2 (2). Because the drug exhibits poor aqueous solubility, researchers have attempted to improve its solubility using various techniques (3, 4). Efforts also have been made to elicit a rapid onset of therapeutic effect by formulating the drug as an effervescent chewable tablet and as a compressed annular tablet with molded tablet triturate (5, 6).

Although conventional tablets are widely accepted oral solid-dosage forms, pediatric, geriatric, and bedridden patients experience difficulties in swallowing them. Moreover, for poorly soluble drugs, dissolution of the drug from the tablet is the rate-limiting step in the process of drug absorption (7). Because the rate and extent of drug absorption is determined by the rate and extent of drug dissolution from tablets, drugs with poor aqueous solubility as a result of erratic or incomplete absorption from the gastrointestinal tract are known to pose potential bioavailability problems (8).

Because nabumetone is practically insoluble in water, its absorption is expected to be dependent on dissolution rate (9). This study attempts to resolve this problem by formulating the drug previously complexed with β-cyclodextrin (β-CD) as a porous rapidly dispersing tablet. These tablets were intended to disintegrate quickly and dissolve completely to facilitate complete drug absorption following oral administration. Inclusion complexes have been used successfully to improve solubility, dissolution, and bioavailability of poorly soluble drugs (10–14).

Materials and methods

Materials. Nabumetone was donated by Micro Labs (Bangalore, India). β-CD manufactured by Roquette Freres (Lestrem cedex, France) was donated by Signet Chemical Corp., (Mumbai, India). Crospovidone (polyplasdone XL) and mannitol (Paerlitol) were samples from Zydus Health Care Ltd., (Bangalore). The other samples of ammonium bicarbonate, saccharine sodium, and polyvinyl pyrollidone-K30 (PVP-K30) were of analytical grade and purchased from S.D. Fine Chemicals (Mumbai).

Phase solubility studies. Phase solubility studies were performed in triplicate at room temperature (25 C) according to the method reported in the literature (10). Excess amounts of nabumetone were added to distilled water containing various concentrations of β-CD (0.3–1.5 mM) in a series of stoppered volumetric flasks and shaken for 72 h on a rotary shaker (Secor Laboratory Instruments, New Delhi, India). The resulting suspensions were filtered through 0.45-μm filter, diluted suitably, and assayed spectrophotometrically (model UV 1700 PC Shimadzu Corp., Kyoto, Japan) at 270 nm using reagent blanks prepared with the same concentrations of β-CD in distilled water. The apparent stability constant (Ks) of the complexes was calculated from the slope and the intercept of the phase solubility diagram using Equation 1:



Preparation of the complexes. The drug β-CD complexes were prepared using the kneading method (10). Nabumetone was mixed with equimolar quantities of β-CD in a mortar with a small amount of water and kneaded for 45 min to obtain a homogeneous paste. The resulting paste was dried in an oven at 45 C for 48 h, and the solid obtained was ground and sieved through a 150-μm sieve. A physical mixture of the drug and β-CD at a 1:1 molar ratio prepared by simple mechanical admixing was used as a reference during characterization of the kneaded complex.

Fourier transform infrared (FTIR)spectrophotometry. The samples were powdered and mixed with dry powdered potassium bromide. The mixtures were taken in a diffuse reflectance sampler and infrared spectra of the drug, β-CD, and the inclusion complexes were recorded by scanning the 400–4000 cm–1 wavelength region in an FTIR spectrophotometer (model 460 Plus, Jasco, Japan).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
27%
Breakthrough designations
9%
Protecting the supply chain
41%
Expedited reviews of drug submissions
9%
More stakeholder involvement
14%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
Source: Pharmaceutical Technology,
Click here