Scientists discover RNA interference in budding yeast - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Scientists discover RNA interference in budding yeast


Pharmaceutical Technology Europe

Vaccine makers and other pharmaceutical manufacturers using yeast protein-expression systems are taking note of a discovery this week by a team of researchers who have found RNA interference in Saccharomyces castellii. S. castellii is closely related to S. cerevisiae, a known eukaryotic model organism whose use in the pharmaceutical production has been cited (1).

“For a long time, people thought that budding yeast didn’t have RNAi at all because S. cerevisiae, which is the model budding yeast, doesn’t have RNAi,” said Kathleen Xie an undergraduate researcher in the laboratory of David Bartel, a professor at the Department of Biology at Massachusetts Institute of Technology (MIT; USA), in a press release issued by Whitehead Institute for Biomedical Research (USA). Xie and Bartel, also affiliated with the Howard Hughes Medical Institute, are two of the coauthors of the study published in the 10 September edition of Science Express. Other authors include I. Drinnenberg (Whitehead and Howard Hughes Medical Institute), D. Weinberg (Whitehead, Howard Hughes Medical and MIT), G. Fink (Whitehead and MIT), and J. Mower and K. Wolfe (both at Smurfit Institute of Genetics, Trinity College, Ireland).

The researchers hope that the discovery will lead to a greater understanding of the RNAi pathway, which is used by plants and animals to silence genes of viruses and transposons. Scientists also hope the finding will lead to more information about other yeasts, such as Candida albicans, a common human pathogen. Yeast expression systems offer several advantages in pharmaceutical production: their genomes are easy to manipulate, they grow quickly under controlled environments, and they have functions and biochemical pathways that are in common with human cells.

Reference
1. B. Huang et al., “Heterologous Production of Secondary Metabolites as Pharmaceuticals in Saccharomyces cerevisiae,” Biotechnol. Lett. 30 (7), 1121¬-1137 (2008).

ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
23%
Oversee medical treatment of patients in the US.
14%
Provide treatment for patients globally.
7%
All of the above.
47%
No government involvement in patient treatment or drug development.
9%
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology Europe,
Click here