Spray Drying of Amorphous Dispersions - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Spray Drying of Amorphous Dispersions
Fundamental approaches to performance, stability and manufacture

Pharmaceutical Technology Europe
Volume 24, Issue 9

Spray drying is a key process for manufacturing amorphous dispersions because of its breadth of applicability. The wide range of potential atomization techniques and controllable drying kinetics enables amorphous spray-dried dispersions (SDDs) to be produced from a wide variety of active pharmaceutical ingredients (APIs). Moreover, spray drying is a continuous, efficient, and well-characterized process that can be easily scaled up from development to pilot to production scale. The use of spray drying for pharmaceutical applications is important because amorphous dispersions are key delivery technologies for increasing the solubility of BCS Class II and IV drugs, which represent more than 50% of the compounds in pharmaceutical company pipelines.

Figure 1: Spray drying process and key amorphous dispersion attributes.
Bend Research, a leader in the production of amorphous dispersions for pharmaceutical applications, has devoted a substantial amount of work to the application of fundamental engineering principles to the spray drying of amorphous dispersions. Application of fundamental knowledge has made it possible to obtain spray-dried amorphous dispersions with the desired stability and performance attributes, smooth process scale-up, and downstream manufacturability. An overview of the process and product is shown in Figure 1.


The spray drying process is amenable to the manufacture of amorphous dispersions across a wide range of API physicochemical properties. Mechanistic understanding of the dissolution mechanism is critical during formulation selection. Dissolution of the primary solid dispersion particle to free drug or high-activity drug species is necessary to enchance the bioavailability of the amorphous solid.

To increase the efficiency and robustness of formulation selection, "guidance maps" are used that account for key API properties related to physical stability and performance. Drug loading and polymer selection can be efficiently optimized to achieve the desired performance attributes of the dispersion (1). The process space is then selected to provide a robust manufacturing window.


Physical stability during spray drying is maintained through the rapid drying kinetics of high-surface-area droplets. Rapid quenching of droplets to achieve a low mobility state, facilitated by use of a high-Tg polymer, is critical to achieving an amorphous dispersion. Atomization and drying conditions are both optimized to ensure a reproducible, robust process that achieves a molecular dispersion and promotes physical stability during in-process hold times.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Report: Pfizer Makes $101 Billion Offer to AstraZeneca
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Source: Pharmaceutical Technology Europe,
Click here