Spray Drying of Amorphous Dispersions - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Spray Drying of Amorphous Dispersions
Fundamental approaches to performance, stability and manufacture

Pharmaceutical Technology Europe
Volume 24, Issue 9

Spray drying is a key process for manufacturing amorphous dispersions because of its breadth of applicability. The wide range of potential atomization techniques and controllable drying kinetics enables amorphous spray-dried dispersions (SDDs) to be produced from a wide variety of active pharmaceutical ingredients (APIs). Moreover, spray drying is a continuous, efficient, and well-characterized process that can be easily scaled up from development to pilot to production scale. The use of spray drying for pharmaceutical applications is important because amorphous dispersions are key delivery technologies for increasing the solubility of BCS Class II and IV drugs, which represent more than 50% of the compounds in pharmaceutical company pipelines.

Figure 1: Spray drying process and key amorphous dispersion attributes.
Bend Research, a leader in the production of amorphous dispersions for pharmaceutical applications, has devoted a substantial amount of work to the application of fundamental engineering principles to the spray drying of amorphous dispersions. Application of fundamental knowledge has made it possible to obtain spray-dried amorphous dispersions with the desired stability and performance attributes, smooth process scale-up, and downstream manufacturability. An overview of the process and product is shown in Figure 1.


The spray drying process is amenable to the manufacture of amorphous dispersions across a wide range of API physicochemical properties. Mechanistic understanding of the dissolution mechanism is critical during formulation selection. Dissolution of the primary solid dispersion particle to free drug or high-activity drug species is necessary to enchance the bioavailability of the amorphous solid.

To increase the efficiency and robustness of formulation selection, "guidance maps" are used that account for key API properties related to physical stability and performance. Drug loading and polymer selection can be efficiently optimized to achieve the desired performance attributes of the dispersion (1). The process space is then selected to provide a robust manufacturing window.


Physical stability during spray drying is maintained through the rapid drying kinetics of high-surface-area droplets. Rapid quenching of droplets to achieve a low mobility state, facilitated by use of a high-Tg polymer, is critical to achieving an amorphous dispersion. Atomization and drying conditions are both optimized to ensure a reproducible, robust process that achieves a molecular dispersion and promotes physical stability during in-process hold times.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology Europe,
Click here