Statistical Solutions: %RSD: Friend or Foe? - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

 Pharmaceutical Technology All results
Statistical Solutions: %RSD: Friend or Foe?
When to use percent relative standard deviation—and how to do so correctly.
 Jan 2, 2010 Pharmaceutical Technology Volume 34, Issue 1, pp. 37-38

Some tools are so useful and intuitive that they achieve widespread acceptance without recommendation. Percent relative standard deviation (%RSD) is one such tool. By formula, it is the standard deviation of a data set divided by the average of the data set multiplied by 100. Conceptually, it is the variability of a data set expressed as a percentage relative to its location. Statisticians know it as the coefficient of variation (CV) (1).

 Lynn D. Torbeck
Analytical laboratories measure and understand variability to estimate product quality. For most analytical laboratory staff and management, the %RSD is used extensively as a universal measure of that variability. It is a general yardstick for chemists for analysis and interpretation.

The understandable appeal lies in its simplicity and in its expression as a percentage. People interpret percentages more easily than the standard deviation in units of, for example, mg/mL.

An advantage of the %RSD is that comparisons can be made across dissimilar results. In fact, the first use was to compare men and women. In 1895, the geneticist and statistician Karl Pearson calculated the averages and standard deviations of male and female internal organs. The men were larger and had larger variability. To compare them on the same basis, he adjusted the standard deviation of each by dividing by the average of each. Multiplying by 100 then yielded a percentage.

%RSD is most beneficial for comparisons where the units of the measurements are different, for example mg/mL and absorbance. It provides a common base for comparison.

 Table I: Example of a misleading standard deviation (SD).
While %RSD is clearly useful, care is needed in the application and interpretation because of its statistical properties. For example, it should only be used where zero for the measurement has real physical meaning such as length, weight, or area under the curve. Don't use it where zero is arbitrary, such as pH.

 Table II: Example of a standard deviation (SD) that is proportional to the average.
The %RSD is also useful when the standard deviation is proportional to the average. If the standard deviation doesn't change much over the range of the group averages, it can be misleading as shown in Table I. Note that the %RSD is changing because the average is changing, not the standard deviation. In Table II, the standard deviation is proportional to the average and the %RSD is unchanged.

Good documentation requires reporting the sample size, average, and standard deviation with the %RSD. The %RSD is misleading when used with data that are expressed as a percentage such as percent recovery. The standard deviation of the data is already in percent. To then find the %RSD is to make the results dependent on the random variation of the average. This defeats the original purpose of estimating the variation of the data values.

 How to work with the percent relative standard deviation tool (%RSD).
The %RSD is not useful for data with a very small average. As the average gets smaller, the %RDS gets larger, approaching infinity as the average approaches zero, which is not a desirable result. It is not useful for limit of quantitation and limit of detection for example.

Estimates of the standard deviation and thus the %RSD are very poor for small sample sizes. There is considerable variation in the estimates of variation when the sample sizes are small. For example, for a sample of 10 data points with 95% confidence, the maximum percent error in estimating the standard deviation can be as large as 50% (2). This variation also illustrates that a calculated standard deviation or %RSD is not a fixed value. Another sample would yield a different value for both.

Following the dictum of the right tools for the job, use the %RSD but do it correctly.

Lynn D. Torbeck is a statistician at Torbeck and Assoc.,2000 Dempster Plaza, Evanston, IL 60202, tel. 847.424.1314,
, http://www.torbeck.org/.

References

1. K. Pearson, Phil. Tans. Royal Soc. London (A), 187, 253–318 (1896).2. L. S. Nelson, Jrnl. of Quality Technol., 8 (3), 179–180 (1976).

| Weekly
| Monthly
|Monthly
| Weekly
 Survey
What do you think the role of continuous (rather than batch) processes in pharmaceutical manufacturing will be over the next five years?
Many companies in the industry will be using continuous processes for some products.
Companies in both pharmaceutical and biopharmaceutical production will be evaluating continuous processes but few will implement.
Only a few companies will be evaluating or implementing; most will stay with batch processing.
Many companies in the industry will be using continuous processes for some products. 34%
Companies in both pharmaceutical and biopharmaceutical production will be evaluating continuous processes but few will implement. 29%
Only a few companies will be evaluating or implementing; most will stay with batch processing. 38%
Most Viewed Articles
 Columnists Outsourcing Outlook Eric LangerNovel Expression Systems Opening CMO Opportunities sponsored by Ingredients Insider Cynthia Challener, PhDSecuring the Global API Supply Chain Regulatory Watch Jill Wechsler FDA Focuses on Drug Appearance and Attributes European Regulatory WatcchSean MilmoEMA Collaborates with HTA Assessment Networks
 UPCOMING CONFERENCES Serialization Summit San Diego, CA Feb. 27-28, 2014 Advances in Aseptic Processing San Diego, CA Mar. 10-12, 2014 ClinTech 2014 Cambridge, MA Mar. 11-13 2014 Investigator-Initiated and Sponsored Research (IISR) Philadelphia, PA Mar. 19-20 2014 See All Conferences >>
 VALIDATION RESOURCES FROM IVT NETWORK Process Validation Special Editions 19th Annual Validation Week Compendium Computer and Software Validation Volume II Special Edition Analytical Method Validation Toolkit More from IVT