Using Ultrasonic Cleaning for Pharmaceutical Equipment - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Using Ultrasonic Cleaning for Pharmaceutical Equipment
Ultrasonic equipment cleans more thoroughly than cleaning by hand or other methods.


Equipment and Processing Report

In pharmaceutical manufacturing, it is imperative to remove all dirt, debris, and abrasive contaminants, as well as molds, bacteria, and toxic chemicals from equipment parts. Pharmaceutical manufacturers have successfully used ultrasonic cleaning to clean filling machine valves and nozzles, gel-cap molds, and hard-pill molds for years. Cleaning these molds, filling valves, and hoses by hand with a variety of implements, such as toothbrushes or wire brushes, is labor intensive and not always effective because brushes cannot reach many internal surfaces. In addition, hand cleaning or simple agitation often requires fairly aggressive sterilizing cleaners, which in some instances may require technicians to wear extensive protective gear. Vertical agitation and high impact spray cleaning are other alternatives to hand cleaning, but because contaminants often settle into minute cracks and crevices that are hard to reach, ultrasonic cleaning is the most reliable method to remove them. Ultrasonic cleaning eliminates hand labor and allows the entire surface to be cleaned. In addition, ultrasonic cleaning can sterilize equipment if the item is cleaned with 60 °C deionized water and the item’s full surface comes in contact with the ultrasonic wash.

In the ultrasonic cleaning process, a technician places the dirty parts into a stainless-steel basket and submerges it into the ultrasonic cleaning tank, which contains an environmentally friendly, water-based cleaning soap. An energy-converting transducer produces sonic frequencies approaching 40,000 cycles per second, creating millions of microscopic vacuum bubbles that implode when they come in contact with a surface. Cleaning occurs because energy is released by the creation and collapse (called cavitation) of these bubbles. The resultant shock waves break up and lift off dirt, residue, and other contaminants. The implosions work similarly to small vacuum cleaners that literally pull off caked on pill residue from any area. Threads, blind holes, and internal cavities are efficiently cleaned when the water-based solution comes in contact with these otherwise inaccessible areas. The contamination is lifted from the machined face and carried away as a suspended particle.

Ultrasonic equipment used in pharmaceutical applications typically is equipped with multi-stage filtration systems so that these floating particulates are filtered out with a micron filter and kept from reattaching to a different area of the part. The micron filters vary in pore size and can be as large as 20 microns and charcoal-based to pull out oils, or as low as a one micron. Manufacturers can use two different rinse baths with different sized filters so that there are no particulates bigger than the smallest filter passing back into the bath.

Parts that are cleaned more thoroughly, such as pill punches or machinery parts with internal mold passages, will not clog with contamination as quickly, which allows pharmaceutical manufacturers to extend the time between scheduled routine maintenance for machinery parts and thus improve productivity. Other benefits of ultrasonic cleaning are lower labor costs and less employee contact with potentially harsh chemicals.

Frank Pedeflous is president of Omegasonics Omegasonics, omegasonics@omegasonics.com

ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
23%
Oversee medical treatment of patients in the US.
14%
Provide treatment for patients globally.
7%
All of the above.
47%
No government involvement in patient treatment or drug development.
9%
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Equipment and Processing Report,
Click here