The Akers–Agalloco Method - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

The Akers–Agalloco Method

Pharmaceutical Technology
Volume 29, Issue 11


As a further guide to the reader, the authors have applied this method to various facilities used for aseptic processing (see Appendix 1, posted at The facilities discussed are models based on real installations, though the authors have altered some of the characteristics to prevent identification. The risk assessment of these facilities was used to fine-tune the model. The authors believe the relative (and, of course, subjective) capabilities of the facilities are consistent with the values obtained and demonstrate the potential utility of the present model for application in aseptic risk assessment. Should readers visit each of the facilities the examples are based on, they might develop a similar perspective.


* The authors do not support increases in environmental monitoring in these already very clean environments in a misguided effort to find what should not be present. Increasing monitoring scrutiny typically increases the number of interventions and thus increases the risk of contamination. In any case, there are no means to prove the absence of microorganisms from an environment; additional samples provide no benefit.

** Sanitization of the lyophilizer is not considered in compliance with CGMP regulations, but some laboratory-scale lyophilizers cannot be sterilized.

James Akers is the president of Akers Kennedy & Associates, Kansas City, MO. James Agalloco* is the president of Agalloco & Associates, 856 US Highway 206, Suite B-11, Hillsborough, NJ 08844, tel. 908.874.7558,
He also is a member of Pharmaceutical Technology's Editorial Advisory Board.

*To whom all correspondence should be addressed.


1. US Food and Drug Administration, Guidance for Industry: Sterile Drug Products Produced by Aseptic Processing—Current Good Manufacturing Practices (FDA, Rockville, MD, Sept. 2004)

2. FDA, Pharmaceutical CGMPs for the Twenty-First Century—A Risk-Based Approach, (FDA, Rockville, MD, Sept. 2004)

3. Parenteral Drug Association, "Process Simulation Testing for Aseptically Filled Products, Technical Report No. 22," J. Pharm. Sci. Technol. 50 (6 suppl.), 1996.

4. B. Reinmuller, "Dispersion and Risk Assessment of Airborne Contaminants in Pharmaceutical Cleanrooms," Royal Institute of Technology, Building Services Engineering 56 (2001).

5. W. Whyte, "Reduction of Microbial Dispersion by Clothing," J. Parenter. Sci. Technol. 39 (1), 51–60 (1985).

6. W. Whyte, "A Cleanroom Contamination Control System," Eur. J. Parenter. Sci. 7 (2), 55–61 (2002).

7. W. Whyte and T. Eaton, "Microbial Risk Assessment in Pharmaceutical Cleanrooms," Eur. J. Parenter. Pharm. Sci. 9 (1), 16–23 (2004).

8. W. Whyte and T. Eaton, "Microbiological Contamination Models for Use in Risk Assessment During Pharmaceutical Production," Eur. J. Parenter. Pharm. Sci. 9 (1), (2004).



11. J. Agalloco, PDA Course Notes on Aseptic Processing, 1988 to date.

12. J. Agalloco. "Management of Aseptic Interventions," Pharm. Technol. 29 (3), 56–66 (2005).

Appendix I: Application of the method

In this appendix, the proposed methodology evaluates five different aseptic processing systems. Execution of the methodology describes the facilities better than a written summary, but a brief description of each is provided by way of introduction.

In each of the facilities, a freeze-dried formulation is used for the evaluation. The authors have chosen to simplify the process by providing the weighted interventions, line speeds, process duration, and thus the intervention risk for each system. The authors recommend using the method described in the text, but in the interest of brevity we have eliminated that step in these examples. The intervention risk for each of these is included in the listing below.

Facility A. An older facility producing a range of small-volume parenterals of various formulations and configurations. Weighted interventions per hour: 90; fill speed: 120 vials/min; process duration: 6 h, and intervention risk (IR ): 0.0125 interventions per container.

Facility B. A heavily automated facility built in the late 1980s and dedicated to the production of a single freeze-dried product in multiple containers and strengths. Weighted interventions per hour: 5; fill speed: 300 vials/min; process duration-5 h; and intervention risk (IR ): 0.00027 interventions per container.

Facility C. An early-generation isolator-based facility intended for a variety of products and formulations. Weighted interventions per hour: 60; fill speed: 80 vials/min; process duration: 4 h; and intervention risk (IR ): 0.0125 interventions per container.

Facility D. A small-volume suite producing clinical materials. Weighted interventions per hour: 60; fill speed: 30 vials/min; process duration: 2 h; and intervention risk (IR ): 0.033.

Facility E. A low-volume clinical suite relying on manual filling. Interventions required per container: 4, thus the intervention risk (IR ): 4. Process duration: 4 h.

The latest media fills at each of these facilities were free of microbial contamination, which reveals the relative inability of process simulations to evaluate relative risk.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here