The Effect of Shear Mixing on the Blending of Cohesive Lubricants and Drugs - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

The Effect of Shear Mixing on the Blending of Cohesive Lubricants and Drugs
Manufacturers must find the appropriate amount of shear mixing to attain the desired drug properties.

Pharmaceutical Technology

Figure 3: Concentration profiles before and after milling.
All the material in a blender will not always be exposed to uniform shear, however. Agglomerates are found in a 300-L vessel after mixing for 256 revolutions at 9 rpm (see Figure 3). Though the blending process achieves a nearly satisfactory level of gross homogeneity, some samples show high active concentrations caused by the presence of drug agglomerates. These agglomerates are readily destroyed by the mill. Samples obtained at the discharge of the mill show a general improvement in the quality of the blend and the disappearance of drug agglomerates (see Figure 3).

The use of mills at the discharge should not be regarded as a universal solution, however. If the blend is highly inhomogeneous, the stream traversing the mill will exhibit differences in composition as a function of time. Lacking back-mixing capacity, a mill cannot eliminate such insufficiencies in homogenization. Typically, an additional mixing stage is required after milling to ensure sufficient homogeneity, although, in such cases, care should be taken to ensure that agglomerates do not re-form.

Shear rate and scale-up of the process

One of the most complex problems in powder blending is the scale-up of an operation that involves cohesive powders. The customary theoretical approach to this problem is to develop a dimensionless version of the equations that govern the flow in a specific geometry (5). As a result, one obtains several dimensionless groups, and experiments can help determine which of those groups are relevant for the specific conditions of operation. The behavior of free-flowing particles is determined mainly by gravitational and centrifugal forces, and the main criterion to scaling up such a process is the Froude number (6). Constitutive interparticle forces are involved in the blending process of cohesive powders, however. The scale-up for the latter process is much more complex, and a rigorous method for such a process has not been established.

Mixing in a tumbling vessel takes place in the flowing layer, and the rest of the material simply follows the motion of the container. Not surprisingly, a body of research is focused on understanding the behavior of this layer (7, 8). The study of the dynamics of avalanches has led some researchers to propose universal granular-flow properties applicable not only to blenders, but to numerous other systems (9). Correlations between the systems' subunits can be described either by an exponential correlation or by a power-law correlation. The exponential law implies the use of a characteristic length scale, whereas power-law systems are scale-free. Data on granular avalanche behavior of granular processes can be applied to fit both of these categories. For free-flowing materials, a theory successfully uses half of the length of the flowing layer as a scaling parameter (10).

These theories can be difficult to apply to cohesive systems under practical conditions. A substantial problem is how to account for the effect of cohesion on powder flow. The problem is extensive, and only a brief discussion is provided in this article. In simple terms, a cohesive powder can be defined as a material in which the adhesive forces between particles exceed the particle weight by at least an order of magnitude. In such systems, particles no longer flow independently; rather, they move in ''chunks'' for which characteristic size depends on the intensity of the cohesive stresses. The size of the chunks introduces an internal, material-dependent length scale that plays a role in flow scale-up (e.g., in determining whether a blend will flow easily into a tablet press die).

The effective magnitude of cohesive effects depends primarily on two factors: the intensity and nature of the cohesive forces and the packing density of the material (which determines the number of interparticle contacts per unit area). This dependence on density is the source of great complexity. Cohesive materials often display highly variable densities that depend greatly on the immediate processing history of the material. In spite of this complexity, a few guidelines can be offered within a fixed operational scale:

  • Slightly cohesive powders mix faster than free-flowing materials.
  • Strongly cohesive powders mix much more slowly than free-flowing materials.
  • Strongly cohesive powders often require externally applied shear (e.g., in the form of an impeller, an intensifier bar, or a chopper).
  • Baffles attached to vessels do not increase shear substantially.

Because there is no systematic means to measure cohesive forces under practical conditions, the effects of cohesion on scale-up have been studied rarely. The most important observation is that cohesive effects are much stronger in smaller vessels, and their effect tends to disappear in larger vessels. The reason is simple: although cohesive forces are surface effects, the gravitational forces that drive flow in tumbling blenders are volume effects. Thus, as the scale of the blender increases, gravitational forces grow faster, thus overwhelming the cohesive forces. This effect also can be explained by remarking that the characteristic chunk size of a cohesive powder flow is a property of the material, and thus, to a first approximation, it is independent of the blender size. As the blender grows larger, the chunk size–blender size ratio decreases. Both arguments can be expressed mathematically in terms of a dimensionless cohesion number, Πc:

in which σ is the effective (surface averaged) cohesive stress (under actual flow conditions), ρ is the powder density under flow conditions, g is the acceleration of gravity, and R is the vessel size. The group σ = (σ ρg) is the aforementioned chunk size, which can be defined more rigorously as the internal length scale of the flow. Thus, as R increases, Πc decreases, explaining why scale-up of powder-blending operations often succeeds in spite of limited understanding of cohesive powder-flow physics.

For processes in which shear entails effects as difficult to predict as overlubrication, overconfidence can lead to devastating process failures. For blenders with intensifier bars and other moving internal parts, the long-established practice has been to match the linear (tip) speed of the moving element, and this approach has been used successfully in numerous practical situations. For blenders without internal moving parts, experience clearly indicates that both shear rates and total shear per revolution increase as the blenders become larger. This effect is supported by ample data showing more frequent overlubrication and less frequent agglomeration in larger tumblers (2, 11). Unfortunately, the method outlined above has so far failed to produce reliable criteria for scaling of shear rates. Though a scaling approach leading to confident design would be greatly desirable, the safest approach at the moment is to seek an empirical correlation between tablet properties and operational variables.


Even though the effects of shear in blending processes are not understood completely, several reproducible observations provide guidance for process design and scale-up.

Tumbling blenders provide low shear intensity, especially in small-scale devices. Baffles do not substantially increase shear.

When blending cohesive APIs, the main process risk is the survival of particle agglomerates that can cause superpotent tablets to occur. Using de-lumping steps can greatly help alleviate this problem, provided that the agglomerates do not re-form during subsequent blending and lubrication.

During lubrication, process risk can be caused either by very short process times, which can lead to the inhomogeneous distribution of the lubricant, or the application of excessive shear, which might reduce lubricity, adversely affect powder flowability, and decrease tablet hardness and solubility. Practitioners must be careful to find an optimum process time. Maintaining such an optimum setting through process scale-up is not trivial because shear rates for tumbling blenders increase for larger systems.

It should be emphasized that a better understanding of the role of shear in process design and scale-up is long overdue. A fundamental limitation is the lack of well-defined experimental systems for which samples are sheared uniformly at a controlled rate to allow systematic quantification of the effects of shear on blend and tablet properties. The development of such a system is actively under way at various institutions, including Rutgers University. Promising results have been obtained and are currently being checked for reproducibility.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here