Effect of Droplet-Wake Phenomena on Mixing-Sensitive Pharmaceutical Reactions - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Effect of Droplet-Wake Phenomena on Mixing-Sensitive Pharmaceutical Reactions


Pharmaceutical Technology



Figure 5
Setup. The experimental setup is shown in Figure 5. An aqueous continuous phase containing known amounts of l-tyrosine, potassium iodide, phosphate buffers, sodium hydroxide, and glycerin was charged to the column. The dispersed organic phase consisting of a known concentration of iodine in methylene chloride was charged to a syringe. A PTFE needle was attached to the syringe and the dispersed phase was fed into the continuous phase subsurface at a constant rate using a syringe pump. The dispersed phase (i.e., the droplet) travelled down the continuous phase and was removed from the bottom of the column by a very small effluent rate. Hydrodynamics around the droplet mixed the reactants. The volume of the continuous phase in the column remained fairly constant during a given experiment. The column was 18 in. in effective length with a 3-in. internal diameter. The column was designed with five discharge ports to allow top and bottom removal of a volume of the liquid phase. Only the middle portion of the continuous phase was used for sampling.

We developed an HPLC method to quantify and analyze the results. The HPLC method uses a linear ramp of the mobile phase to ensure peak separation and to shorten the run time of the method. All samples were analyzed with an HPLC instrument ("series 1100," Hewlett Packard) and software (ChemStation Rev. A.10.01, Agilent Technologies). The column was a 250 4.6 mm i.d., 5 μm C8 column (ACE, Advanced Chromatography Technologies). All samples were analyzed at a wavelength of 210 nm. The mobile phase consisted of acetonitrile (solvent A) and water containing 0.05 v% of perchloric acid and 0.1 v% of phosphoric acid (solvent B). The wavelength and solvents were chosen to minimize the run time while providing good separation and peak formation of each reaction component. (For more details, see Raffensberger [34]).


Table I: l-Tyrosine solution components.
Procedure. The aqueous l-tyrosine solution was prepared using the recipe listed in Table I. The water was saturated with methylene chloride to prevent solvent mass transfer from the dispersed phase. The resulting concentration of l-tyrosine solution used in the experiments was 0.084 0.001 mg l-tyrosine/mL water.

The organic iodine solution was prepared using the recipe listed in Table II. The resulting concentration of iodine in methylene chloride was 31.7 0.1 mg iodine/mL methylene chloride. The solution was aged for several hours to ensure all of the iodine had dissolved.


Table II: Iodine solution components.
Once both solutions were prepared, the continuous phase for a given experiment was made. The continuous phase was 1250 mL in volume and contained 75 mL of the l-tyrosine solution described previously. The remainder of the continuous phase consisted of water saturated with methylene chloride, glycerin, and 1.2 g each of sodium phosphate dibasic and sodium phosphate tribasic dodecahydrate. For example, a 30% glycerin solution would contain 75 mL l-tyrosine solution, 375 mL glycerin, 800 mL of deionized water saturated with methylene chloride, 1.2 g of sodium phosphate dibasic, and 1.2 g of sodium phosphate tribasic dodecahydrate. The solution was mixed for at least 5 min, and the pH and temperature of the continuous phase were checked. The pH of the continuous phase at the start was between 10 and 11. For all of the experiments reported, the starting temperature varied between 22 and 25 C.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
22%
Attracting a skilled workforce
30%
Obtaining/maintaining adequate financing
11%
Regulatory compliance
37%
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatcchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Obama Administration Halts Attack on Medicare Drug Plans
Source: Pharmaceutical Technology,
Click here