Solid-State Characterization and Dissolution Properties of Lovastatin Hydroxypropyl-β-Cyclodextrin Inclusion Complex - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Solid-State Characterization and Dissolution Properties of Lovastatin Hydroxypropyl-β-Cyclodextrin Inclusion Complex
The objectives of this study were to prepare and characterize inclusion complexes of lovastatin with hydroxypropyl-β-cyclodextrin (HPβ-CD) and to study the effect of the complexes on the dissolution rate of lovastatin (LVS). The findings suggest that LVS's poor dissolution profile can be overcome by preparing its inclusion complex with HPβ-CD.


Pharmaceutical Technology



Figure 3: Fourier transform infrared spectrograms of (a) lovastatin, (B) hydroxypropyl-β-cyclodextrin, (c) the physical mixture, and complexes prepared by (d) the coevaporation method and (e) the kneading method.
The IR spectra of LVS, HPβ-CD, the physical mixture, and complexes prepared by the coevaporation and the kneading methods are presented in Figure 3. The spectrum of pure LVS presented characteristic peaks at 3510 cm–1 (alcohol O–H stretching vibration); 3016 cm–1 (olefinic C–H stretching vibration); 2970, 2930, and 2876 cm–1 (methyl and methylene C–H stretching vibration); 1725, 1713, and 1690 cm–1 (lactone and ester carbonyl stretch [hydrogen bonded for 1711 and 1700 cm–1 ]); 1430, 1378, and 1350 cm–1 (methyl and methylene bending vibration); 1275, 1228, 1080, and 1050 cm–1 (lactone and ester C–O–C bending vibration); 972 cm–1 (alcohol C–OH stretch); and 873 cm–1 (trisubstituted olefinic C–H wag).

The IR spectrum of the HPβ-CD is characterized by intense bands at 3300–3500 cm–1 because of O–H stretching vibrations. The vibration of the –CH and CH2 groups appears in the 280–3000-cm–1 region. The spectrum patterns of the physical mixture correspond with the superposition of the IR spectra of the two components. The absence of characteristic peaks of LVS and the presence of characteristic peaks caused by HPβ-CD in the IR spectra of complexes prepared by the coevaporation and the kneading methods indicate that LVS is inside the cavity of HPβ-CD. The IR spectra of the physical mixture and complexes prepared by the coevaporation method and the kneading methods showed most of the characteristic peaks were similar to that of HPβ-CD, except one peak at 1700 cm–1 for lactone and ester carbonyl stretching vibration (hydrogen bonded for 1711 and 1700 cm–1 ), which is characteristic of LVS. This effect indicates that the pyrol part of LVS remains outside the HPβ-CD, whereas the remaining part fits inside the HPβ-CD cavity.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
26%
Attracting a skilled workforce
29%
Obtaining/maintaining adequate financing
14%
Regulatory compliance
31%
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatcchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Obama Administration Halts Attack on Medicare Drug Plans
Source: Pharmaceutical Technology,
Click here