Big Shot: Developments in Prefilled Syringes - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Big Shot: Developments in Prefilled Syringes
Many companies are coming up with innovative materials and manufacturing methods to feed the growing demand for prefilled syringes.

Pharmaceutical Technology

Figure 2: Automated filling lines provide the necessary direct and individual handling of syringes (photo courtesy of Baxter BioPharma Solutions).
Whereas vials can easily sit on a track and be directed along their sides with relatively simple belts and conveyors, syringes require direct handling (see Figure 2). Syringes are unstable because of their high center of gravity and therefore require specialized transport systems to reduce the risk of breaking or scratching. The finger flange of the syringe can be the most vulnerable, so the handling system must allow space between each unit.

Handling. Syringes can be transported using pucks constructed of thermoresistant plastic or stainless steel. The pucks hold the syringes upright as they move them through heat tunnels. Specially designed trays transport the syringes into autoclaves. Traditional lines are designed to hold syringes by the flange, but some experts believe this system poses a risk to breakage.

"We are seeing more systems that have either pucks or systems that hold the syringe throughout the transport systems using vacuums on the starwheel. This allows the syringes to be elevated as needed without being supported on the bottom or by the finger flange" says Isberg.

Syringes may be supplied in bulk (e.g, for plastic syringes), rondo trays (e.g., for flanged syringes), or in nested tubs. Bulk plastic syringes are first sorted before being arranged in a line and must be presterilized by autoclaving. Current state of the art includes automatic handling units for transferring the syringes into the filling line transport system.

Figure 3: This load-lock system for nested tubs is an integrated three-isolator design with optimized mouseholes, pressure cascades to protect the air in the main chamber, sliding partitions within each chamber, biodecontamination within the main chamber, and shared air handling (photo courtesy of Robert Bosch Packaging Technology).
Syringes packed in nested tubs have gained much interest. The tubs are packaged sterilized in bags and contain presterilized units. There are still challenges in their handling with isolators, however. First, the tubs must be removed from the outer bag without compromising sterility. In addition, the outside of the tub must be disinfected before it is transferred into a barrier system, the tubs are continuously transferred into and out of the barrier system, the Tyvek lid of each tub must be removed, and the "nest" and tub must be separated (see Figure 3).

Isolator manufacturers are working toward new designs that will accommodate this process. Isberg points out that nested tubs have had "major implications" on barrier design, including: large custom mouseholes at the inlet at outlet points, pressure and air separation must be maintained, barriers must be compatible with tub disinfection systems, barrier footprints are wider because of the tub transport system, and removal of the Tyvek sheet lids from the barrier chamber. One new robotic system has been designed to remove these sheets from the tub in an ISO 5 environment, eliminating the risk of contamination and particle generation during delidding.

Automation. Moving away from traditional cleanrooms and toward barrier systems requires a greater reliance on automated systems and robotics. Already there is very little human intervention in the process, but more automation could provide greater consistency.

Automation strategies for prefilled syringes include automated loading of lyophilizers, autoclaves, and dry-heat sterilization tunnels as well as robot transfer systems (2).

"Full automation of all syringe processing steps will soon be a reality," predicts Isberg. "Barrier systems must adapt to accommodate new ways to process syringes, including the use of robotics."

Robotic handing units are commercially available and several have already been installed in pharmaceutical companies. Still, there has been some hesitation in the industry about adopting these units into the processing lines.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here