Copolymerized PEGlyated Acrylate Hydrogels for Delivery of Dicolofenac Sodium - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Copolymerized PEGlyated Acrylate Hydrogels for Delivery of Dicolofenac Sodium
Hydrogels are biocompatible drug delivery systems by which the physical properties can be controlled by the cross-linking density. Hydrogels were prepared by copolymerization of acrylic acid monomers in the presence of poly(ethylene glycol)(PEG) to form polyethylene diacrylate (PEDGA). Various molecular weights of PEGs were used for the synthesis of PEGDA to study the effect of molecular weight of PEG on the properties of hydrogels. These hydrogels were further characterized for free water, swelling..


Pharmaceutical Technology



Table VI: Acrylic acid hydrogel formulations prepared according to 32 factorial design and their properties.
The release data of all the formulations were fitted into these models, and the correlation coefficients, slope, and intercepts were determined (Table V). From the values of the correlation coefficients, the best fitted data can be predicted (34). The curve fitting of the release data was carried out mainly by regression analysis, and for zero-order, the release trend is more significant and has a higher R 2 value than that at the first order model of analysis. Most of the formulations of these types generally release the drug in a mixed-order basis. In the present experiment, the release profile, however, was found to be best fitting in the zero-order kinetics. It can be assumed, therefore, that the release of the drug from the hydrogel systems follows zero-order kinetics to some extent.


Table VII: Analysis of variance (ANOVA) of regression on the responses of acrylic acid hydrogels.
Porosity . Like other matrix systems, the porosity (created by the chemical cross-linking using PEGDA in the hydrogels) can be calculated by the diffusion rate coefficients (25). In the present study, the porosity was calculated using the diffusion coefficients of the drug from the drug-loaded hydrogels and its aqueous solution. The results of this study (see Table III) confirmed the prediction that the porosity of the hydrogels increased with the increase in the molecular weight of the PEGDA for the same percentage w/w content. For example, the porosity of formulation B10 (hydrogel containing PEG 1000) was 0.392 and that of B60 (hydrogel containing PEG 6000) was 0.522.

Statistical analysis . All the data obtained were further analyzed using factorial design and multiple regressions. The effects of weight ratio and molecular weight were studied on all the parameters. Three levels (high, medium, and low) were chosen for these two factors (see Table VI). A 32 factorial design was constructed, and properties of nine formulations (see Table VI) were compared. The analysis of variance (ANOVA) test was applied on the data obtained (see Table VII). The responses were regressed against the factors using the first order with interaction and the following equation was formed.









The F-significance was < 0.05 in all the cases. The ANOVA test, therefore, showed that the models were quite significant. It can be predicted, therefore, that the properties of these hydrogels were determined by both the molar percentage of PEGDA as well as the type of monomer used. From the release pattern observed, it can be suggested that these hydrogel formulations can be used as sustained-release dosage forms.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
28%
Oversee medical treatment of patients in the US.
9%
Provide treatment for patients globally.
9%
All of the above.
41%
No government involvement in patient treatment or drug development.
13%
Jim Miller Outsourcing Outlook Jim MillerCMO Industry Thins Out
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerFluorination Remains Key Challenge in API Synthesis
Marilyn E. Morris Guest EditorialMarilyn E. MorrisBolstering Graduate Education and Research Programs
Jill Wechsler Regulatory Watch Jill Wechsler Biopharma Manufacturers Respond to Ebola Crisis
Sean Milmo European Regulatory WatchSean MilmoHarmonizing Marketing Approval of Generic Drugs in Europe
FDA Reorganization to Promote Drug Quality
FDA Readies Quality Metrics Measures
New FDA Team to Spur Modern Drug Manufacturing
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Source: Pharmaceutical Technology,
Click here