The Effect of Core and Coating Composition on Drug Release from Directly Compressed Time-Controlled Release Tablets - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

The Effect of Core and Coating Composition on Drug Release from Directly Compressed Time-Controlled Release Tablets
The authors prepared and tested press-coated tablets with various weight ratios of ethylcellulose to hydroxypropylcellulose (HPC) and various ratios of two different batches of HPC as an outer coating shell and fillers in core tablets. The tablets were examined for changes in time lag and release patterns of salbutamol sulfate.


Pharmaceutical Technology


References

1. T. Bussemer, I. Otto, and R. Bodmeier, "Pulsatile Drug Delivery Systems," Crit. Rev. Ther. Drug Carrier Syst. 18 (5), 433–458 (2001).

2. B.C. Youan, "Chronopharmaceutics: gimmick or clinically relevant approach to drug delivery?" J. Controlled Release 98, 337–353 (2004).

3. B. Lemmer, "Why Are So Many Biological Systems Periodic?" Proceedings of the APV Course: Pulsatile Drug Delivery-Current Applications and Future Trends, 20–22 (1992).

4. E.R. Sutherland and H.S. Nalson, "Nocturnal Asthma," J. Allergy Clin. Immunol. 1179–1186 (2005).

5. S.Y. Lin, K.H. Lin, and M.J. Li, "Micronized Ethylcellulose Used for Designing a Directly Compressed Time-Controlled Disintegration Tablet," J. Controlled Release, 70, 321–328 (2001).

6. S.Y. Lin, M.J. Li, and K.H. Lin, "Formulation Design of Double-layer in the Outer Shell of Dry-coated Tablet to Modulate Lag Time and Time-Controlled Dissolution Function: Studies on Micronized Ethylcellulose for Dosage Form Design (VII),"AAPS J. 6 (3), Article 17 (2004).

7. S.Y. Lin, M.J. Li, and K.H. Lin, "Hydrophilic Excipients Modulate the Time Lag of Time-Controlled Disintegrating Press-Coated Tablets," AAPS PharmSciTech. 5 (4), Article 54 (2004).

8. E. Fukui, K. Uemura, and M. Kobayashi, "Studies on Applicability of Press-Coated Tablets using Hydroxypropylcellulose (HPC) in the Outer Shell for Timed-Release Preparations." J. Controlled Release 68, 215–223 (2003).

9. D.S. Roy and B.D. Rohera, "Comparative Evaluation of Rate of Hydration and Matrix Erosion of HEC and HPC and Study of Drug Release from Their Matrices," Eur. J. Pharm.Sci. 16, 193–199 (2002).

10. K. Hauschild and K.M. Picker, "Evaluation of a New Coprocessed based on Lactose and Maize Starch for Tablet Formulation" AAPS PharmSci. 6 (2), article 16 (2004).

11. G.S. Rekhi and S.S. Jambhekar, "Ethylcellulose-A Polymer Review," Drug. Devlop. Ind. Phrm. 21 (1), 66–77 (1995).

12. U. Conte et al., "Press-coated Tablets for Time Programmed Release of Drugs." Biomaterials 14 (13), 1017–1023 (1993).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
35%
Breakthrough designations
12%
Protecting the supply chain
35%
Expedited reviews of drug submissions
12%
More stakeholder involvement
6%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
USP Faces New Challenges
Source: Pharmaceutical Technology,
Click here