Eluting Possibilities with Mixed-Mode Chromatography - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Eluting Possibilities with Mixed-Mode Chromatography
Mixed-mode chromatography sorbents and custom ligands aim to optimize protein purification.

Pharmaceutical Technology

Libraries of mixed-mode ligands

The use of specialized sorbents may reduce the number of process steps. (IMAGE COURTESY OF PALL)
GE Healthcare Bio-Sciences (Uppsala, Sweden, http://www.gelifesciences.com/) is designing chromatographic ligand libraries following combinatorial chemistry strategies, which take into account a wide range of parameters and interactions to design ligands for mixed-mode applications.

"This approach provides the possibility to tune the performance of your media," says Jean-Luc Maloisel, PhD, staff scientist. "We use it to discover new selectivities and to improve discriminate chromatographic media. GE Healthcare has the traditional media, and we try to introduce new interactions to modulate the performance of these media." The company designs a library of mixed-mode ligands comprising about 50 prototypes to start with. These first, diverse libraries are used in the initial screening step to find a set of interactions that will perform according to a desired specification (e.g., for protein recovery, protein binding, elution).

After the identification of promising candidates, a second-generation library is designed by introducing additional interactions, thereby fine-tuning the modification to the media to reach the final target specification.

"We can screen our libraries of media very rapidly and in different ways using microtiterplate formats. The libraries are not set in stone, and we are always continuously working to diversify them. The libraries we have now may be slightly different tomorrow, so we can design them in different ways," says Maloisel.

Traditional methods are robust, but may not be the optimal solutions in terms of process economy and time to market. "In some cases you really would like to have a wider range of selectivities and have more customized solutions. And that is where the library of multimodal ligands can be useful. However often, people will not take the time and trouble to screen a lot of media. This is where the microtiterplate format allow for a high-throughput process development and that is where you have a chance to win" says Maloisel.

GE has launched multimodal cation exchangers as part of its "Capto" platform. One challenge in designing these media was to develop a medium allowing for binding proteins under high-salt conditions without the need to dilute the feedstock. Using computerized programs, the company made a diverse range of cation exchangers and then screened this range with the condition that the prestandard be salt tolerant. The company also developed anion exchange media for monoclonal antibody capture. "It doesn't replace the other chromatographic media, but it can replace traditional chromatography media lacking the prestandard performance."

Process chromatographers continue to work toward systems that are more economical, offer better selectivity, and lead to greater yields. (IMAGE COURTESY OF PALL)
UpFront Chromatography (Copenhagen, Denmark, http://www.upfront-dk.com/) also has developed a library of 200 ligands. The general criteria are that these ligands must be nontoxic, simple to manufacture to high purities, stable to harsh cleaning, and stable when immobilized. The performance of the ligands can be modified using various approaches.

"It depends on the constituent groups," explains Rob Noel, business development manager at UpFront. "If you take a group of ligands that have a common ionic component such as a carboxyl group, which is negatively charged, then you can change the pI of that carboxyl group depending on its substituents in the ligand."

Mixed-mode ligands can use a combination of aromatic, hydrophobic, ionic, and hydrogen bonding groups. Each combination of chemical groups may have a particular target on the protein surface. Most mixed-mode ligands bind to the surface of protein.

"We try to mimic in some way how a protein–protein interaction would work even though the chemistry is different," says Noel.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here