Radiation Sterilization of Parenterals - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Radiation Sterilization of Parenterals
Irradiation is an established method of sterilization for pharmaceutical products. Radiation sterilization can be achieved with gamma rays, electron beams, and X-rays. Each of these techniques has its advantages and disadvantages. The author describes these methods, the ways to find the correct sterilization doses, and the regulatory and safety concerns about irradation sterilization.


Pharmaceutical Technology


Packaging materials. The radiation stability of packaging and container materials must never be overlooked when considering radiation compatibility. Lists of radiation-compatible packaging materials are readily available (1, 6, 22–25).

Validation of radiation sterilization

Validation of the radiation-sterilization process is an integral aspect of good manufacturing practice. It comprises installation qualification (IQ), operational qualification (OQ), performance qualification (PQ), materials compatibility, selection of sterilization dose, and routine process control. These components of validation relate either to the irradiation facility itself or the product being irradiated.

IQ, or irradiator commissioning, ensures that the irradiator has been supplied and installed in accordance with its specifications.

The essential parameter that must be controlled in radiation sterilization is measurement of radiation dose. Measurement is achieved using dosimeters, which are chemical or physical systems that respond quantitatively to absorbed radiation doses.

OQ demonstrates that the installed irradiator can operate and deliver appropriate radiation doses within defined acceptance criteria. PQ is essentially dose mapping. During dose mapping, the location and magnitude of the minimum and maximum delivered doses must be identified.

Radiation units. The absorbed radiation dose generally is expressed in rads (radiation absorbed doses). One rad is equivalent to an absorbed energy of 100 erg/g of material. The currently used SI unit for radiation-absorbed doses, however, is the gray, which is equivalent to an energy absorption of 1 joule/kg. One gray is equivalent to 100 rad, and 25 kGy, a common radiation dose for sterilization, is equivalent to 2.5 Mrad.

Determination of sterilization dose

An integral part of sterilization-process validation is the determination of a radiation dose for sterilization. Any deviation from the selected dose could either compromise the sterility of the product or damage the product.

A radiation dose of 25 kGy (2.5 Mrad) generally is accepted as suitable for sterilization purposes. This dose was chosen according to the radiation resistance of the bacterial spores of Bacillus pumilus. Today, the choice of radiation dose is based on the presterilization microbial contamination, or bioburden, and the desired sterility assurance level (SAL) of the product. Such considerations are based in part on extensive studies of the effects of substerilization doses on different microbial populations (27, 28). SAL is defined as the probability of a single viable microorganism occurring on a product following sterilization. SAL normally is expressed as 10n . While the majority of authorities give n a value of 6, FDA does allow values of less than 6 for noninvasive products.

Most regulatory authorities expect radiation sterilization doses to be selected according to one of the methods of the International Organization for Standardization (ISO) standard, ISO 11137-2:2006 (Sterilization of Health Care Products—Radiation—Part 2: Establishing the Sterilization Dose). ISO 11137:2006 is published in three sections that discuss radiation sterilization, establishing the sterilization dose for radiation sterilization, and dosimetric aspects of radiation sterilization. The dose-setting methods described in the AAMI–ISO standards owe much to the ideas first presented by Tallentire and his colleagues (26).

The first ISO method, designated Method 1, is certainly the most common method used for dose selection for sterilization. The method requires the average microbial contamination of representative samples of the product to be determined. Note that the microbial population's radiation resistance is not determined. Dose setting is based on manufacturers' data about the resistance of microbial populations. The distribution of the chosen resistance is assumed to represent a more severe challenge than that presented by the natural bioburden of the article to be sterilized. The assumption is verified experimentally by irradiating 100 samples at a given verification dose and is accepted if no more than two contaminated samples remain. The sterilizing dose, which is appropriate for the average bioburden per sample and the desired SAL for the product, is then read from a table.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
29%
Breakthrough designations
10%
Protecting the supply chain
43%
Expedited reviews of drug submissions
10%
More stakeholder involvement
10%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
Source: Pharmaceutical Technology,
Click here