Solubility, Polymorphism, Crystallinity, Crystal Habit, and Drying Scheme of (R, S)-(±)-Sodium Ibuprofen Dihydrate - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Solubility, Polymorphism, Crystallinity, Crystal Habit, and Drying Scheme of (R, S)-(±)-Sodium Ibuprofen Dihydrate
The racemic compound (R, S)-()-ibuprofen is a popular and well understood active pharmaceutical ingredient, but it has several disadvantageous formulation properties such as poor solubility, low melting point, and potential esterification with excipients containing an hydroxyl group. The authors investigate the use of an (R, S)-()-ibuprofen salt to evaluate these problems using various analytical methods to determine the polymorphism, crystallinity, and drying scheme.


Pharmaceutical Technology



Figure 12
The crystal habit and aspect ratio of length-to-breath of (R, S)-()-sodium ibuprofen dihydrate crystals produced from the nine pure solvents are shown in Figure 11. Most of the crystals grown from THF, n-butyl alcohol, IPA, benzyl alcohol, ethanol, methanol, and water were hexagonal plates. There was a strong correlation between high values of the polar component (δp) and the aspect ratio of crystals. For polar aprotic good solvents such as DMF and DMSO, high δp might have induced the rapid growth of polar (001) faces containing sodium ions and carboxylic groups (12, 26) in the [010] direction to form long needles rather than two-dimensional plates as verified by the SEM micrograph showing the (001) faces without the sandwiched layers as the major (010) planes (see Figures 10 and 12). The hexagonal plate and rod-like crystal habits grown from the nine pure solvents were all plotted against the Hansen parameters in Figure 13. To test the predictability of the 3-D Hansen plot (see Figure 13), (R, S)-()-sodium ibuprofen dihydrate was grown in another polar aprotic solvent, acetonitrile with a high δp of 18 MPa1/2. Needle-shape crystals were produced as expected (see Figure 14).

Conclusion


Figure 13
Useful scale-up and drug development data of solubility, polymorphism, crystallinity, crystal habit, and drying schemes of (R, S)-()-sodium ibuprofen dihydrate crystals were generated by the initial solvent-screening method. Solubility data were processed and treated with the van't Hoff equation, form space, and solubility sphere. The dependency of crystal habits on solvents and drying schemes were derived using optical microscopy and scanning electron microscopy. The relationships between crystal habits and microscopic properties of solvents were plotted by a 3-D Hansen model. In principle, the initial solvent-screening strategy can be readily extended to and integrated with food, explosives, optoelectronics, agricultural, and ceramics products.

Acknowledgment


Figure 14
This work was supported by a grant from the National Science Council of Taiwan, Republic of China (NSC 95-2113-M-008-012-MY2). Assistance from Ling-I Hung, PhD, postdoctoral, at the Solid-State Inorganic Chemistry Laboratory on Diamond 3.1 computer software, suggestions from Jui-Mei Huang in differential scanning calorimetry and thermal gravimetric analysis, and Shew-Jen Weng in X-ray diffraction, all with the Precision Instrument Center at the National Central University gratefully are acknowledged.

Tu Lee,* PhD, is an assistant professor at the Department of Chemical and Materials Engineering and the Institute of Materials Science and Engineering, National Central University, 300 Jhong-Da Rd, Jhong-Li City 320, Taiwan, Republic of China tel. + 886-3-422-7151, ext. 34204, fax + 886-3-425-2296,
Ying Hsiu Chen and Chyong Wen Zhang are graduate students, the Department of Chemical and Materials Engineering, National Central University.

*To whom all correspondence should be addressed.

Submitted: Dec. 11, 2006. Accepted:Jan. 24, 2007.

Key words: form space, Hansen model, racemic (R,S)-() sodium ibuprofen dihydrate, solubility sphere

References

1. B. J. Armitage, J. F. Lampard, and A. Smith, "Composition of S-Sodium Ibuprofen," US Patent 6,242,000 B1 (2001).

2. A. Gracin and A.C. Rasmuson, "Solubility of Phenylacetic Acid, P-hydroxyphenylacetic Acid, P-aminophenylacetic acid, P-hydroxybenzoic acid, and Ibuprofen in Pure Solvents," J. Chem. Eng. Data 47 (6), 1379–1383 (2002).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here