A Look at 30 Years of Change in Pharmaceutical Automation - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

A Look at 30 Years of Change in Pharmaceutical Automation
Automation took hold gradually in the life-science industry. Its adoption brought the industry innovations and improved efficiency. Recent years witnessed the emergence of batch-automation systems and the development of standards for automation. The authors discuss the major changes automation brought to the industry and examine the rapid pace of technological development.

Pharmaceutical Technology

Milestone. 30 Years of Pharmaceutical Technology
In addition to automation standards, regulatory concerns arose involving system management, production automation, and the data being created. In response to the uncertainty about validating computer systems, end users, automation vendors, and consultants collaborated to define and standardize practices. In 1994, the Parenteral Drug Association (PDA) issued Technical Report 18: Validation of Computer-Related Systems. In 1995, the Good Automated Manufacturing Practice (GAMP) Forum issued The GAMP Guide for Validation of Automated Systems in Pharmaceutical Manufacture. GAMP became the user community's forum for comments and responses to governmental regulations. Also, PDA issued Technical Report 32 to define good practices for auditing suppliers. Although 21 CFR Part 11 was not formally issued until 1997, it had begun to be developed in the early 1990s. Part 11 focused on how to design, implement, test, and manage change with automation systems and the electronic data created. By the late 1990s, the focus had clearly begun to shift from applying technology to managing records and demonstrating regulatory compliance.

The late 1990s and early 2000s

The standardization movement gained momentum with the advent of the new century. Life-sciences companies built upon trends from the early 1990s by using distributed hardware and putting Ethernet-enabled input–ouptut in the field. These measures were followed into the field by controllers and their cabinets as centralized rack rooms were superseded. Yet, life-science companies proved quite conservative when it came to adopting the digital field buses that were becoming common in other industries. These companies are only now moving in this direction.

Life-science industry users also accelerated their demand for standardized, configurable, OTS equipment. They also began demanding standardized connections between software applications. In the real-time world, standards such as Ole for Process Control (OPC) became the accepted means to share data between plant-floor applications.

Yet more real-time connectivity for batch information was needed, so the industry participated in the development of the S95 standard to help define connections between applications such as enterprise-resource planning and plant-floor automation systems (e.g., DCS) to make batch execution and recipe management more effective. Recipe- and materials-management applications, their interaction, and their connectivity were key for life-science users.

The regulatory burden peaked at the turn of the century. Restrictive audit findings by FDA (which increased the burden of rules already on the books) and the more general year-2000 computer issues led life-science companies to focus on meeting regulations, not on improving manufacturing. Companies used GAMP and other industry avenues to warn regulatory bodies of their heavy burdens.

Regulations such as Part 11, however, also drove the life-science industry to move to the forefront in some areas. Today, life-science companies are ahead of chemical and other industries on the issues of data security, record security, lot tracking, and batch management in general. Not only did fear of Part 11 enforcement inspire the industry to take action, but the regulation's focus on electronic data and record issues caused companies to reevaluate and modify their systems even when enforcement lessened. Also, life-sciences vendors were motivated to improve product features for electronic data and records.

Recent changes

In response to the industry's concerns, FDA released its report titled Pharmaceutical CGMPs for the 21st Century—A Risk-Based Approach in 2004. FDA's new policy allowed life-science companies to be innovative and to apply risk-based technology approaches to improve manufacturing. As a result, the adoption of digital buses, advanced control technology such as neural nets and multivariable process control, and embedded in-line analytical analysis is becoming widespread.

Further extensions of the standards movement include completely modularized plant construction and the accelerated use of standardized skid-mounted equipment. These changes made the construction process faster. Combined with the spread of standards and class-based approaches, they have had a significant effect on automation and technology. Standardized process equipment spurred the use of commercial, OTS hardware for networking, computing, and user interfacing. This hardware makes support easier to deliver and accelerates the technology change life-science companies face.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here