Recovery of Precious Metals in Spent Process Catalysts - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Recovery of Precious Metals in Spent Process Catalysts
Catalysts are important tools in the synthesis of active pharmaceutical ingredients. Recovery of precious-metal catalysts from a pharmaceutical manufacturing process is a factor in cost control and environmental compliance.

Pharmaceutical Technology

Figure 1
Dry sampling . For pharmaceutical catalysts, dry sampling begins with a thermal oxidation step to remove built-up organic contaminants, carbon, and moisture from the catalyst materials. Removing contaminants helps increase sampling accuracy significantly. A low-temperature burn in a tray furnace removes moisture, followed by a higher-temperature burn to remove carbon without volatizing the precious metals. Once these contaminants have been removed, dry sampling involves grinding the spent catalyst into smaller and smaller particles that are passed through a series of screens. Properly following this process of particle size reduction and successive screening can provide a typical representative sample accuracy of 2%. (see Figure 1).

Figure 2
Melt sampling and solution sampling. Similarly, melt sampling (see Figure 2) and solution sampling (see Figure 3) involve the reduction of spent catalysts and their PGMs into slurries and liquid solutions, respectively, from which the amount of precious-metals content can be accurately determined.

Figure 3
The choice of sampling approach is often critical to the amount of precious metal recovered from a spent catalyst. Clear communication between the refiner and the pharmaceutical manufacturer and, in some cases, a third-party expert hired by the pharmaceutical manufacturer to monitor the process (known as an "umpire") is necessary to ensure that no questions arise regarding the choice of sampling method and/or the final results of the sampling process.

Handling practices. A pharmaceutical manufacturer can check on certain best practices to ensure that a precious-metals refiner is handling its spent catalyst material properly. The material should be properly stored at the refiner, weighed on certified, inspected scales, and assigned a tracking or control number. The measured weight should be in agreement with the value determined by the pharmaceutical manufacturer prior to shipping the material to the refiner. The material should be supported by proper documentation by the refiner, including confirmation of the materials' description, piece counts (if applicable), and weights. Any differences between the refiner's information and that of the pharmaceutical manufacturer should be documented.

Assays . Once samples are obtained, the refiner and the pharmaceutical manufacturer typically assay the samples for their precious-metals content independently. Ideally, the percentage values of PGMs found in the samples by the two assays agree fairly closely. If not, the two values can be averaged to obtain a final agreed-upon figure for valuation of the PGMs in the spent catalyst.

Specialized instruments designed for materials analysis are used to perform assays on the sampled materials. These instruments include machines capable of performing X-ray fluorescence measurements for identifying contaminants still contained within the samples, atomic absorption and inductively coupled plasma emission spectroscopes and tools for performing classic volumetric, gravimetric, and fire assay techniques.

The type of materials to be assayed will determine the analysis approaches and equipment used in the assay. The techniques described above have been approved by the American Bureau of Standards and by the New York Metal Exchange/Commodities Exchange. In combination, these methods provide an accurate means of determining the amount of precious-metals content in spent pharmaceutical catalysts.

Advanced laboratories typically perform assays in triplicate to ensure the accuracy of PGM measurements. In a true partnership, a precious-metals refiner will invite a pharmaceutical manufacturer to not only be present while materials are being sampled, but also to conduct their own independent analysis.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here