Lubrication of Direct-Compressible Blends with Magnesium Stearate Monohydrate and Dihydrate - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Lubrication of Direct-Compressible Blends with Magnesium Stearate Monohydrate and Dihydrate
The influence of magnesium stearate (MgSt) on powder lubrication and finished solid-dose properties presents big challenges to drug manufacturers.

Pharmaceutical Technology

Table IV: Physical and chemical results for blends. Blend uniformity and effusivity results.
Similarly, with the same 75:25 diluent ratio, MCC–DCP blends lubricated with MgSt-M exhibited 2–3 times more densification than MgSt-D (Batch 7 versus Batch 11). Also MCC–LAC blends with a 75:25 ratio, when lubricated with MgSt-M, showed about 1.6 times more densification than blends with MgSt-D (Batch12 versus Batch 14). Moreover, within the MCC–LAC diluent system, the 50:50 diluent ratio tends to show higher delta effusivity than the 75:25 ratio. (Batch 12 versus Batch 16, and Batch 14 versus Batch 17). This result could be attributed to the increasing contribution of lactose in the formulation, particle–particle interaction, and diluent-type sensitivity to the influence of MgSt. Although the mechanism of the densification may not be fully understood, it is believed that the finer particles of the lubricant tend to displace the air pockets between larger particles and occupy the interstices with a resultant more densely packed powder mixture. Such particulate packing, presumably a result of MgSt addition, could disturb the established blend uniformity.

Table V: Factors and responses—the influence of MgSt on type and concentration.
Content uniformity. The data in Table VI show the compression batches containing MCC–DCP and MCC–LAC binary diluents systems. Results show that except for Batch 8, all batches gave acceptable results for content uniformity. The mean assay for 10 tablets for Batch 8 was 96.9%. The %RSD was 7.9, however, which is much higher than the acceptable limit (20). Batch 8 was lubricated with 1.0% of MgSt-M for 10 min. This result implies that an extended period of lubrication could affect the tablets' content uniformity. In their study, El Hagrasy, Chang, and Kiang alluded to the risk of lubricant mixing when they monitored the lubrication of placebo granules with various levels of MgSt (22). Their findings suggested that improper mixing of lubricant in the final blends could compromise tablet dissolution and quality.

Figure 9
Based on a Plackett–Burman design, % MgSt, MCC–DCP ratio, Avicel type, % APAP, and lubrication time were evaluated for their influence on ejection force and total compression force. Using the method of least squares, regression models were developed for the total force (precompression and main compression forces) and the ejection force to elucidate the influence of the lubricants on the compression process.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatcchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Obama Administration Halts Attack on Medicare Drug Plans
Source: Pharmaceutical Technology,
Click here