The Application of Quality by Design to Analytical Methods - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

The Application of Quality by Design to Analytical Methods
To monitor and control processes or products, analytical methodology must be fit for purpose. An approach to apply quality by design principles to the design and evaluation of analytical methods has therefore been developed to meet these needs.

This article features a downloadable template on which to conduct a failure mode effect analysis (FMEA).

Pharmaceutical Technology

Method development (design selection). Fundamental to design selection is the method-development phase. To develop a QbD method, the method performance criteria must be understood as well as the desired operational intent that the eventual end user would wish to see in the method. To deliver the latter, methods must take into account the VoC.

The method development process should use an agreed standardized approach between development and manufacturing. For example, within GSK there is a companywide strategy for chromatographic methods that is based on the best scientific knowledge and expertise that is aimed at minimizing unnecessary and detrimental diversity. The design of the method is a key decision. Issues that may easily be solved by appropriate selection at this point are likely to be more difficult to fix later, if trying to optimize a poor method not suited to meet its method-performance criteria. Consideration also must be given to whether on-line methods can be used in place of traditional lab-based methods. This assessment takes place once the CQAs for the process have been identified.

Through a thorough understanding of the design intent, methods for commercial operation would be designed only for those specific impurities relevant to the commercial product. Historically, the methods transferred into quality control laboratories have often taken into account potential impurities detected in earlier routes of synthesis, which cannot be formed from the commercial route or monitor theoretical degradation products that, in practice, are not formed during routine stability studies. Significant opportunities exist to identify what is truly critical to control and reduce method complexity once sufficient process understanding is obtained.

Risk assessment and analytical design-space definition (control definition). It is imperative to reach a high degree of confidence that the analytical method will meet all method performance criteria under all conditions of use as it progresses through the lifecycle. This confidence level can be achieved by using a rigorous approach for identifying all the potential method factors that may need to be controlled to ensure method performance and through the use of risk assessment tools and prioritized experimentation that eliminate areas of risk.

To maximize the benefits of performing a risk assessment, the analysts who have developed the method should work as a team with the analysts who will be using the method in manufacturing. To fully understand the method, a walk-through is recommended that involves all the analysts observing one analyst using the method from start to finish in the manufacturing environment. Each of the steps within the method can then be mapped out separately (e.g., sample preparation, dissolution, extraction, chromatographic separation, data analysis).

Figure 2: Fishbone diagram created for an HPLC assay and impurities method.
A cause-and-effect diagram, also known as a fishbone or Ishikawa diagram, can then be used after the walk through to facilitate brainstorming of all the potential factors that may influence the method performance criteria (15). Mind-mapping software can be valuable in this exercise because it facilitates the collection of all the detailed factors that represent potential variables in the method. Figure 2 shows an example of part of a fishbone performed on a tablet HPLC assay–impurities method. Under each subheading, there are further factors (not shown in Figure 2). For example, for HPLC, subfactors include the pump, dwell volume, autosampler, and detector. With information obtained from operating the method and the walk-through, analysts are encouraged to draw upon their past experience of the operation of similar methods on various products to ensure that previous lesssons learned are incorporated into the risk assessment. Establishing a corporate knowledge repository for important factors for each technique can facilitate this learning process.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here