Polysaccharide-Based Chiral Chromatography Media in HPLC and SFC - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Polysaccharide-Based Chiral Chromatography Media in HPLC and SFC
Polysaccharide-based chiral stationary phases have been developed that comprise chiral selectors immobilized on their support rather than being physically coated. These materials are completely solvent stable, thereby increasing selectivity and and enabling the development of new chiral selectors that have been too unstable in a coated form for general use.


Pharmaceutical Technology



Figure 2: Separation of the enantiomers of prilocaine. Green is Chiralpak IA, blue is Chiralpak IB, and red is Chiralpak IC. Mobile phase is hexane–2-propanol 8:2; flow rate = 1 mL/min; column dimensions = 250 4.6 mm.
Immobilizing otherwise unstable chiral selectors has great advantages, including the ability to separate enantiomers that cannot be resolved on existing CSPs. The unique structure of Chiralpak IC often allows separations of different selectivity from other polysaccharide-based CSPs. A combination of Chiralpak IC with Chiralpak IA and IB is replacing the older generation coated phases. The three immobilized columns are complementary, and a separation can sometimes be found on only one column. Figure 2 shows the example of prilocaine where the enantiomers are poorly separated with Chiralpak IA and IB but are well resolved with Chiralpak IC (8).


Figure 3: Separation of indoprofen enantiomers. Column was Chiralpak IC, 250 4.6 mm. All mobile phases contained 0.1% trifluoroacetic acid. Flow rate = 1 mL/min. Green is 30% ethanol in hexane; blue is 35% 2-propanol in hexane; and red is 2% methanol in dichloromethane.
Immobilization of the chiral polymer increases solvent stability, which allows modification of the selectivity of chiral separations by the modulation of the solvent composition and its components. Figure 3 shows the exploitation of the mobile-phase constituents. Neither of the conventional mobile phases (hexane–2-propanol or hexane–ethanol) gave good resolution of the enantiomers of indoprofen using Chiralpak IC (8). Dichloromethane-based mobile phase improved separation in a significantly shorter time.

Separation method development

The restrictions on solvents that applied to the early generation of coated polysaccharide CSPs made the development of separation methods using them relatively straightforward. One screened with four mobile phase mixtures—hexane:ethanol, hexane:2-propanol, acetonitrile, and 1:1 ethanol:methanol. Following this, the optimization also was simple because there were either "hits" or not, and the opportunity for modifying the separations achieved were limited. This limitation is an important advantage of these CSPs because the vast majority of separations can be found using these four solvents and only four CSPs—the tris-(3,5-dimethylphenylcarbamate) of cellulose and of amylose, cellulose tris(4-methylbenzoate), and amylose tris(S)-α-methylbenzylcarbamate.

Using immobilized CSPs removes the restrictions of solvents to the extent where any organic solvent with a reasonable viscosity is now accessible. This is a tremendous advantage in that it allows optimization of separations using solvent selectivity effects not available for methods using the coated CSPs. Nonetheless, this also may complicate the development of separation methods simply because of the bewildering array of solvents from which to choose.

To simplify the task, statistical studies have been conducted to assist in solvent selection and reduce the number that should be tried to a reasonable few while retaining maximum resolution and selectivity. Of course, such statistical guidelines must be based upon a wide range of applications to ensure their relevance, and there will always be some exceptions.

Two main sets of data, each based on the separation of a different set of 70 compounds, have been developed. Each set was screened using a wide range of solvents, and the success rates arising from each were determined.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
32%
Breakthrough designations
11%
Protecting the supply chain
37%
Expedited reviews of drug submissions
11%
More stakeholder involvement
11%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
Source: Pharmaceutical Technology,
Click here