Raw-Material Authentication Using a Handheld Raman Spectrometer - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Raw-Material Authentication Using a Handheld Raman Spectrometer
Using a handheld Raman spectrometer, the authors developed methods for 28 commonly used excipients and active ingredients.


Pharmaceutical Technology
Volume 3, Issue 32

Experiment


Table I: TruScan instrument specifications.
Handheld Raman material identity verification systems were used in this work (TruScan, Ahura Scientific, Wilmington, MA). Six units manufactured at different times from different runs of parts were used in this study (details provided in subsequent paragraphs in this article). This instrumentation uses a 785-nm NIR external cavity-stabilized, cooled laser as a light source. The laser has a maximum power consumption of 1 W, a maximum output of 400 mW, and typically operates at 300 mW output. A single-dispersive spectrometer, cooled CCD, and dielectric notch filters for Rayleigh rejection make up the rest of the instrument hardware. The device also has an integrated barcode reader for capturing sample lot–batch–other identifiers and selecting methods. Detailed specifications are listed in Table I.


Materials tested
Three TruScan devices (hereafter referred to as the "test devices") were tested with each of the 32 common pharmaceutical materials listed in the sidebar "Materials tested" (Sigma-Aldrich, St. Louis, MO) to evaluate the applicability of the systems for incoming inspection.

To create methods, reference spectra first had to be acquired. The reference spectra for the materials were taken on three TruScan devices (hereafter referred to as "reference devices") using identical data collection software as the test devices described above. In the context of TruScan, methods are analytical tasks based on stored reference spectra that the instrument's software executes to determine whether a material's identity can be verified. For each material, a single reference spectrum was acquired by one of the three reference devices.

To collect each reference spectrum, a sample of the material was placed in a borosilicate glass vial (VWR, West Chester, PA) and the data were collected through the wall of the vial. The laser aperture of the instrument was placed at the appropriate distance from the vial using either the nose-cone or vial-holder attachment for correct spacing. For most materials, the acquisition process was initiated and simply allowed to continue until terminated automatically by the unit's library acquisition software. In contrast, cellulose, dextrin, trimagnesium phosphate, zinc sulfate, and calcium sulfate are slightly fluorescent, so special care had to be taken to avoid photobleaching the sample during reference measurement. This can be achieved by terminating the reference scan before the software automatically discontinues measurement or by periodically moving the sample throughout data collection. Finally, while reference spectra were collected, it was determined that colloidal silica, talc, sodium carboxy methyl cellulose, and hydroxy propyl methyl cellulose did not provide an adequate signal to be measured in a practical period of time for handheld deployment. In particular, colloidal silica had a very weak Raman signal, and the other three materials were too fluorescent to allow reliable determinations to be made.

Methods were created from the reference spectra by the associated web-based software utility and then loaded into the test instruments. To prepare test samples to challenge the methods, samples of approximately 2 g each of the 28 remaining materials were sealed in 2-m-thick polyethylene bags in an effort to emulate expected-use scenarios (measurement through plastic bags) for incoming material inspection. Three measurements of each sample were made, one measurement with each of the three test devices. Each test measurement was made using the automatic (or "auto") mode, where the unit's software controls data acquisition parameters to achieve the necessary spectral signal-to-noise ratio (SNR) in the shortest measurement time possible. The auto-mode measurements used when running a method compensate for differences in operator positioning, stray-light, lot-to-lot sample fluorescence, and so forth. Each "unknown" measured spectrum (three for each material) was evaluated against each method for the test materials using the probability based approach described previously, resulting in a p-value for each unknown-method pair.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
29%
Oversee medical treatment of patients in the US.
10%
Provide treatment for patients globally.
6%
All of the above.
42%
No government involvement in patient treatment or drug development.
13%
Jim Miller Outsourcing Outlook Jim MillerCMO Industry Thins Out
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerFluorination Remains Key Challenge in API Synthesis
Marilyn E. Morris Guest EditorialMarilyn E. MorrisBolstering Graduate Education and Research Programs
Jill Wechsler Regulatory Watch Jill Wechsler Biopharma Manufacturers Respond to Ebola Crisis
Sean Milmo European Regulatory WatchSean MilmoHarmonizing Marketing Approval of Generic Drugs in Europe
FDA Reorganization to Promote Drug Quality
FDA Readies Quality Metrics Measures
New FDA Team to Spur Modern Drug Manufacturing
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Source: Pharmaceutical Technology,
Click here