Packing-Line Improvement Based on a Fault-Tree Analysis Approach - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Packing-Line Improvement Based on a Fault-Tree Analysis Approach
This article focuses on upgrading and improving a packing process to comply with current good manufacturing practices. The authors sought to maintain proper quality assurance for finished products.


Pharmaceutical Technology
Volume 3, Issue 32

Validation of proposed packing-line configuration and organization


Table I: Technical balance qualification for checking multiple-unit boxes (MUB) completion by weighing.
Qualifications of key process components were carried out. The vial-labeling machine was qualified according to the protocol designed for that purpose (8). The technical balance used to checking MUB completion by weighing was calibrated and verified according to in-house metrological procedures. In addition, the balance's ability to detect missing components was also qualified, taking into account MUB weight variations caused by the weights of individual components. The technical balance's sensitivity for reproducibly detecting single leaflets missing from MUBs leaving the packaging line was tested. The results of the testing are shown in Table I. Six MUBs were taken from the end-of-line at different moments (i.e., the start, middle, and end times) during the packing process. Weight differences were determined by removing a single leaflet from each MUB. When the weight differences were compared statistically with the corresponding leaflet weights, they did not vary significantly (9).

The packing line was then validated to determine the buffer and packing operators' ability to detect and correct the failures described previously. Three consecutive runs were performed for this purpose by simulating automatic labeling and manual packaging operations in each run on 1440 placebo vials with printed packing material (i.e., vial labels, cartons, and leaflets for testing). Labels for MUB and shipping boxes were not used. To challenge the operators, vials were introduced during each run that had been deliberately prepared with defects. Among them were 40 unlabeled vials, 40 vials with badly pasted or wrinkled labels, and 45 vials with primary information missing from their labels, making a total of 125 faulty vials to detect.

To establish an acceptance criterion in each run, a single sampling plan for normal inspection was employed based on a general inspection level II and 0.10 acceptance-quality limit index (10). It was established that if any of the deliberately defective vials were not detected during a run, the packing-line performance would be considered unsatisfactory. The test also required the detection of all other faulty vials that resulted from errors in labeling-machine operation.

The packing operators' ability to ensure MUB completion was simultaneously verified by weighing MUBs at the end-of-line workstation. Based on the above qualification, an operational procedure determined weight limits at the beginning of each packing operation by averaging the weight of the first three complete MUBs leaving the line. A tolerance of ±1.8 g (i.e., the weight of the lightest leaflet) was established.

Results and analysis


Table II: Results from packing-line simulation runs: Visual checking of defects by operators.
All runs demonstrated that operator performance was good and that the barriers implemented against failure were effective. All 125 of the faulty vials deliberately prepared and introduced into the packing line as failures were detected (see Table II). The buffer operator rejected 73.6–94.4% of the faulty vials. The packing operators rejected the rest. In the worst case, 33 faulty vials reached them.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
26%
Oversee medical treatment of patients in the US.
12%
Provide treatment for patients globally.
10%
All of the above.
43%
No government involvement in patient treatment or drug development.
10%
Jim Miller Outsourcing Outlook Jim MillerCMO Industry Thins Out
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerFluorination Remains Key Challenge in API Synthesis
Marilyn E. Morris Guest EditorialMarilyn E. MorrisBolstering Graduate Education and Research Programs
Jill Wechsler Regulatory Watch Jill Wechsler Biopharma Manufacturers Respond to Ebola Crisis
Sean Milmo European Regulatory WatchSean MilmoHarmonizing Marketing Approval of Generic Drugs in Europe
FDA Reorganization to Promote Drug Quality
FDA Readies Quality Metrics Measures
New FDA Team to Spur Modern Drug Manufacturing
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Source: Pharmaceutical Technology,
Click here