Spectrophotometric Determination of Lead - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Spectrophotometric Determination of Lead
The authors developed a reliable spectrophotometric method for determining and measuring trace amounts of lead in various samples.


Pharmaceutical Technology


6. T. Logan, Lead Contamination in the Garden, http://ohioline.osu.edu/hyg-fact/1000/1149.html, Published time unknown.

7. G. G. Holmgren et al., "Cadmium, Lead, Copper, and Nickel in Agriculatural Soils of the United States of America," J. Environ. Qual. 22, 335–348 (1993).

8. West Coast Analytical Service, "Lead in Supplements and Antacids," (2002), available at http://www.wcas.com/tech/casupp.htm, accessed Mar. 7, 2008.

9. US Department of Agriculture, Determination of Cadmium and Lead by ICP-MS, available at http://www.fsis.usda.gov/PDF/CLG_TM_3_01.pdf (2006).

10. B. S. Sheppard, D. T. Heitkemper, and C. M. Gaston, "Microwave Digestion for the Determination of Arsenic, Cadmium, and Lead in Seafood Products by Inductively Coupled Plasma Atomic Emission and Mass Spectrometry," The Analyst, 119, 1683–1686 (1994).

11. K. Ndung'u, S. Hibdon, and A.R. Flegal, "Determination of Lead in Vinegar by ICP-MS and GFAAS: Evaluation of Different Sample Preparation Procedures," Talanta 64 (1), 258 – 263 (2004).

12. E. Hahn et al., "SS-GFAAS: An Ideal Method for the Evaluation of Lead and Cadmium Profiles in Birds' Feathers," Fresenius' J. Anal. Chem., 337 (3), 306–309 (1990).

13. X. Zhang et al., "GFAAS Determination of Trace Lead in Toothpase Using L'vov Platform,"Guang Pu Xue Yu Guang Pu Fen Xi, 19 (3), 388–391 (1999).

14. W. Bashir, S. G. Butler, and B. Paull, "Determination of Lead in Water Samples Using Ion Chromatography with a Xylenol Orange Containing Eluent," Analytical Letters 34 (9), 1529–1540 (2001).

15. N.G. Sellers, "Ion-Exchange Separation and Determination of Lead in Steel by Atomic Absorption," Anal. Chem., 44 (2), 410–411 (1972).

16. M.S. Di Nezio, M. E. Palomeque, and B.S. Fernandez Band, "A Sensitive Spectrophotometric Method for Lead Determination by Flow Injection Analysis with On-Line Preconcentration," Talanta 63 (2), 405–409 (2004).

17. Z.J. Li et al., "Spectrophotometric Determination of Lead in Biological Samples with Dibromo-p-methyl-methylsulfonazo," Talanta 48 (3), 511–516 (1999).

18. D. Wang, H.Q. Luo, and N.B. Li, "Resonance Rayleigh Scattering Method for the Determination of Trace Amounts of Lead(II) with 1-(2-Pyridylazo)-2-Napththol Dye," Instrumentation Sci. Technol. 33 (4), 427– 436 (2005).

19. Y. J. Dong and K. Gai, "Determination of Trace Amounts of Lead by Spectrofluorimetry," Hydrometallurgy of China, 24 (3), 172–174 (2005).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
32%
Breakthrough designations
11%
Protecting the supply chain
37%
Expedited reviews of drug submissions
11%
More stakeholder involvement
11%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
Source: Pharmaceutical Technology,
Click here