Advances in Radio-Frequency Transdermal Drug Delivery - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Advances in Radio-Frequency Transdermal Drug Delivery
A microelectronic system based on radio-frequency (RF) cell ablation addresses limitations of other transdermal drug-delivery methods. This system expands the transdermal spectrum to include the delivery of water-soluble molecules, peptides, proteins, and other macromolecules.

Pharmaceutical Technology

Small-molecule delivery

Table I
The skin's low permeability limits the types of drugs that can be delivered transdermally. Many drugs with a hydrophilic character permeate the intact skin too slowly to be of therapeutic benefit (10). Under RF cell ablation, pretreating the skin allows aquatic channels to form across the stratum corneum, which provides significant enhancement in the permeability of water-soluble compounds. Drugs that exhibit insufficient solubility in water can still benefit from the technology. By increasing solubility using various formulation approaches, such as drug-cyclodextrin complexes or dissolving the drug in a water-alcohol mixture, the drugs are also able to permeate the skin. Table I shows the in vitro skin permeability of various drugs in a dynamic diffusion-cell model using full-thickness porcine skin. The results show enhanced transdermal delivery with the hydrophilic compounds—granisetron hydrogen chloride (HCl) and lidocaine HCl. Lidocaine HCl is more water-soluble than diclofenac sodium and had higher delivery rates. The effect of the compound concentration on its delivery rate was shown with testosterone (2% versus 6% in aqueous solution) and lidocaine HCl (2% versus 5% in aqueous solution). The delivery rate increased linearly with the concentration of the loaded compound.

Effect of molecular size on delivery rate

Figure 6
The effect of molecular size on the delivery rate of macromolecules through the treated skin was shown in a study using fluorescein isothiocyanate-labeled dextran molecules of various sizes: 10, 40 or 70 kDa. This in vitro experiment tested the delivery of these macromolecules through a full-thickness porcine skin that had been pretreated with the device. An increase in molecular size brought about a decrease in delivery rate (see Figure 6). However, it is important to note that even the largest 70-kDa molecule was successfully delivered transdermally through the RF microchannels.

Effect of patch technology on pharmacokinetic profiles

Figure 7
Based on the patch technology used, two types of drug profiles are feasible using the microelectronic system (ViaDerm). When a patch based on a dry formulation is used (i.e, a protein-printed patch), a peak-drug profile is observed in the blood, which resembles a profile of a subcutaneous injection. Figure 7 shows the blood profile for delivering human growth hormone in pigs. The peak Cmax (maximum concentration) is affected by the patch dose (see Figure 7a) or by microchannel density (see Figure 7b). Figure 7a shows that increasing the drug load on the patch resulted in a higher delivered amount. Figure 7b shows the effect of microchannel density on the efficiency of drug delivery. Increasing the microchannel density from 150 to 300 microchannels (MCs)/cm2 resulted in a much higher delivered amount without increasing the drug load on the patch. This technique also significantly increased the bioavailability of the drug.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Report: Pfizer Makes $101 Billion Offer to AstraZeneca
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Source: Pharmaceutical Technology,
Click here