Developments in Tooling Inspections and Technology - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Developments in Tooling Inspections and Technology
Inspecting punches and dies can be time-consuming and costly for tablet manufacturers. Advances in technology, however, have greatly improved in-process inspections. The author examines improvements in equipment and computer software for in-process tool inspections.


Pharmaceutical Technology


Data entry. Data entry presents various obstacles during the inspection process. Overcoming these obstacles requires that the process be as efficient as possible. Several methods for capturing inspection data directly into a personal computer's database or spreadsheet may be used rather than typing or writing the measurements by hand. The most basic approach is to connect the measuring gauge to a USB-connection tool activated by a button or foot pedal. With this approach, the inspector transfers the value (i.e., the reading) on the gauge directly to the computer database or spreadsheet whenever he or she pushes the button or steps on the foot pedal. The inspector no longer needs to take the time to write or type the inspection measurements. This approach eliminates the potential for typographical errors, which are common when dealing with measurements that have three- or four-place decimal-point accuracy. Some inspection systems provide greater convenience and efficiency by enabling communication between the measuring devices and the software through a serial cable or USB connection. Usually, systems with sophisticated communication can eliminate the need for the technician to step on a foot pedal or press a button to capture data.

Data storage. Storing inspection data electronically facilitates easy data retrieval for review or analysis. Inspection results with allowable tolerances can be readily compared by clicking a mouse to produce a report that lists each tool and identifies any measurements that exceed allowable tolerances. This automated approach is much better than visually reviewing a printed document for such occurrences. Summary information such as average, minimum, and maximum dimensions and range can be included in the automated report. An automated system can easily issue a report that compares each dimension and calculates the difference between two inspections.


Figure 4: (FIGURE COURTESY OF THE AUTHOR)
Tool matching. Tool matching is an excellent example of how an automated system can utilize inspection data that have already been collected to generate reports which are difficult to produce in a manual system. The purpose of matching the longest upper punch with the shortest lower punch based on their working lengths is to allow the tablet manufacturer to minimize deviations in tablet thickness and hardness (see Figure 3). The process consists of sorting the upper punches in sequence from longest to shortest and sorting the lower punches in opposite order (i.e., from shortest to longest). If the working-length measurements collected during the last inspection are stored electronically, producing this report takes only a matter of seconds (see Figure 4). Completing the process manually would take much longer and possibly prevent a tablet manufacturer from improving consistency in tablet thickness and hardness.

Databasing tooling inventory. Establishing a comprehensive database of a tablet manufacturer's entire tooling inventory creates a great source of information. By transferring electronic files between computer systems, data can be passed from the tool manufacturer to the tablet manufacturer, downloaded, and integrated directly into a tooling database. No manual data entry is required. An electronic tooling database can include information such as size, shape, steel type, purchase order number, tolerances, cup configuration, embossing, and inspection data. An additional benefit of using a database to store tooling information is that it eliminates the need to retype the same information every time that it is needed for a report or an inspection.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here