Unfolding Catalytic Routes to APIs - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Unfolding Catalytic Routes to APIs
Chemocatalytic and biocatalytic routes show promise for more efficient syntheses of select active ingredients.

Pharmaceutical Technology

Figure 2: Examples of active ingredients for which biocatalytic routes are being developed: rosuvastatin (1) and esomeprazole (2). (ALL MOLECULES IN FIGURE ARE COURTESY OF US FOOD AND DRUG ADMINISTRATION)
Codexis is developing intermediates and APIs for the generic equivalents of several branded pharmaceutical products, according to the company's S-1 filing. The company plans to launch an intermediate for Merck & Co.'s "Singulair" (montelukast); esomeprazole, the API in AstraZeneca's "Nexium" (see Figure 2); and rosuvastatin, the API in AstraZeneca's "Crestor" (see Figure 2). Other products for which it plans to sell generic APIs are levetiracetam, the API in "Keppra" by UCB Pharmaceuticals (Brussels) and duloxetine, the API in "Cymbalta" by Eli Lilly (Indianapolis, IN), according to the company's S-1 filing.

Last year, Codexis developed biocatalyst panels to allow innovators to screen biocatalysts for activity against existing drug compounds and pipeline candidates. Once a useful biocatalyst is discovered through the panels or in-house screening, Codexis provides the biocatalyst for commercial manufacture or provides further screening and optimization if needed. Merck & Co. was Codexis's first customer for the panels.

To develop its biocatalysts, Codexis uses gene shuffling to manipulate the genetic code for a biocatalyst to produce variants of the enzyme with improved industrial characteristics. It also uses whole genome shuffling to manipulate the genome of a microbe to produce new microbial variants. This technique entails protoplast fusion, which fuses two or more cells into one, followed by the regeneration of normal cells, to shuffle the genome. High-throughput screening methods screen the biocatalysts for activity. Codexis's proprietary "ProSAR" bioinformatics software quantifies the effect of specific mutations in an improved biocatalyst variant.

Phosphite dehydrogenase-based NADP regeneration technology

Enzyme-catalyzed reactions that require stoichiometric amounts of reduced nicotinamide cofactors, nicotinamide adenine dinucleotide (NADH) and its phosphorylated form (NADPH) have much potential in biocatalysis. A drawback, however, is these cofactors are expensive. Preparative applications require regeneration of the cofactors in situ, usually by a second enzyme with high specificity for a sacrificial substrate (2).

Researchers have successfully addressed this problem. Huimin Zhao, professor in the Department of Chemical and Engineering, Wilfred A. van der Donk, professor in the Department of Chemistry, and William Metcalf, professor in the Department of Microbiology at the University of Illinois, used directed evolution and rational-design approaches to develop a novel phosphite dehydrogenase (PTDH)-based NADPH regeneration system to improve the enzyme activity toward NADP by 1000-fold, to increase the overall activity sixfold, and to increase the thermostability by more than 22,000-fold. PTDH is considered more efficient than technology based on formate/formate dehydrogenase (2, 7).

Zhao and his team discovered and characterized a wild-type PTDH enzyme from Pseudomonas stutzeri that catalyzes the oxidation of phosphite to phosphate with the reduction of NADP+ to NADPH. His team engineered a PTDH variant with improved stability, activity, and cofactor specificity. The variant PTDH also has higher specific activity, a higher thermodynamic equilibrium constant, and a broader pH-rate maximum. The phosphite substrate is also inexpensive (2, 7).

The team used a membrane bioreactor for the synthesis of L-tert-leucine and xylitol using the variant PTDH for cofactor regeneration. The PTDH system has many applications for the industrial synthesis of unnatural amino acids, polyols, and chiral alcohols. The technology was licensed to BASF (Ludwigshafen, Germany) and BioCatalytics, now part of Codexis (2, 7).

Patricia Van Arnum is a senior editor at Pharmaceutical Technology, 485 Route One South, Bldg F, First Floor, Iselin, NJ, 08830, tel. 732.346.3072,


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here