Variables Affecting Reconstitution Time of Dry Powder for Injection - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Variables Affecting Reconstitution Time of Dry Powder for Injection
The authors describe the factors affecting reconstitution time of dry powder for injection and classifies them as intrinsic and extrinsic parameters.

Pharmaceutical Technology

17. A.K. Bansal, "Product Development Issues of Powders for Injection," Pharm. Technol. 26 (3), 122–132 (2002).

18. A. Kristl et al., "Polymorphism and Pseudopolymorphism: Influencing the Dissolution Properties of the Guanine Derivative Acyclovir," Int. J. Pharm. 139 (1–2), 231–235 (1996).

19. M. Borrnstein and S.M. Carone, "Method for Preparing Sterile Essentially Amorphous Cephazolin for Reconstitution for Parenteral Administration," US Patent 4002748 (1977).

20. A. Saleki-Gerhardt et al., "Assessment of Disorder in Crystalline Solids," Int. J. Pharm. 101 (3), 237–247 (1994).

21. S.J. Bai et al., "Quantification of Glycine Crystallinity by Near- Infrared (NIR) Spectroscopy," J. Pharm. Sci. 93 (10), 2439–2447 (2004).

22. P. Niemela et al., "Quantitative Analysis of Amorphous Content of Lactose Using CCD-Raman Spectroscopy," J. Pharm. Biomed. Anal. 37 (5), 907–911 (2005).

23. R. Lefort et al., "Solid State NMR and DSC Methods for Quantifying the Amorphous Content in Solid Dosage Forms: an Application to Ball-Milling of Trehalose," Int. J. Pharm. 280 (1–2), 209–219 (2004).

24. L. Mackin et al., "Quantification of Low Levels (<10%) of Amorphous Content in Micronised Active Batches Using Dynamic Vapor Sorption and Isothermal Microcalorimetry," Int. J. Pharm. 231 (2), 227–236 (2002).

25. T. Sebhatu et al., "Assessment of the Degree of Disorder in Crystalline Solids by Isothermal Microcalorimetry," Int. J. Pharm. 104 (2), 135–144 (1994).

26. D. Giron et al., "Quantitation of Amorphicity by Microcalorimetry," J. Therm. Anal. Calorim. 48 (3), 465–472 (1997).

27. J. Han et al., "Applications of Pressure Differential Scanning Calorimetry in the Study of Pharmaceutical Hydrates. II. Ampicillin Trihydrate," Int. J. Pharm. 170 (1), 63–72 (1998).

28. S. Guinot and F. Leveiller, "The Use of MTDSC to Assess the Amorphous Phase Content of a Micronised Drug Substance," Int. J. Pharm. 192 (1), 63–75 (1999).

29. E. Katainen et al., "Evaluation of the Amorphous Content of Lactose by Solution Calorimetry and Raman Spectroscopy," Talanta 68 (1), 1–5 (2005).

30. V.P. Lehto et al., "The Comparison of Seven Different Methods to Quantify the Amorphous Content of Spray-Dried Lactose," Powder Technol. 167 (2), 85–93 (2006).

31. B. Freudig et al., "Dispersion of Powders in Liquids in a Stirred Vessel," Chem. Eng. Process. 38 (4–6), 525–532 (1999).


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Report: Pfizer Makes $101 Billion Offer to AstraZeneca
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Source: Pharmaceutical Technology,
Click here