Self-Emulsifying Drug Delivery Systems - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Self-Emulsifying Drug Delivery Systems
This review article explains how self-emulsifying drug delivery systems can increase the solubility and bioavailability of poorly soluble drug.


Pharmaceutical Technology


Droplet Size. This is a crucial factor in self-emulsification performance because it determines the rate and extent of drug release as well as the stability of the emulsion (10, 18). Photon correlation spectroscopy, microscopic techniques or a Coulter Nanosizer are mainly used for the determination of the emulsion droplet size (10, 19, 20). The reduction of the droplet size to values below 50 μm leads to the formation of SMEDDSs, which are stable, isotropic and clear o/w dispersions (6).

Zeta potential measurement. This is used to identify the charge of the droplets. In conventional SEDDSs, the charge on an oil droplet is negative due to presence of free fatty acids (17).

Determination of emulsification time. Self-emulsification time, dispersibility, appearance and flowability was observed and scored according to techniques described in H. Shen et al. (21) used for the grading of formulations.

Application

SEDDS formulation is composed of lipids, surfactants, and cosolvents. The system has the ability to form an oil-in-water emulsion when dispersed by an aqueous phase under gentle agitation. SEDDSs present drugs in a small droplet size and well-proportioned distribution, and increase the dissolution and permeability. Furthermore, because drugs can be loaded in the inner phase and delivered by lymphatic bypass share, SEDDSs protect drugs against hydrolysis by enzymes in the GI tract and reduce the presystemic clearance in the GI mucosa and hepatic first-pass metabolism. Table I shows the SEDDSs prepared for oral delivery of lipophilic drugs in recent years.

Conclusion

Self-emulsifying drug delivery systems are a promising approach for the formulation of drug compounds with poor aqueous solubility. The oral delivery of hydrophobic drugs can be made possible by SEDDSs, which have been shown to substantially improve oral bioavailability. With future development of this technology, SEDDSs will continue to enable novel applications in drug delivery and solve problems associated with the delivery of poorly soluble drugs.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerRelationship-building at Top of Mind for Clients
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerRisk Reduction Top Driver for Biopharmaceutical Raw Material Development
Jill Wechsler Regulatory Watch Jill Wechsler Changes and Challenges for Generic Drugs
Faiz Kermaini Industry Insider Faiz KermainiNo Signs of a Slowdown in Mergers
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here