Highly Efficient Olefin-Metathesis Catalysts - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Highly Efficient Olefin-Metathesis Catalysts
The authors describe the Piers' catalysts and detail latest progress in olefin-metathesis catalyst technology.

Pharmaceutical Technology

7. S.R. Dubberley et al., "Synthesis, Characterization and Olefin Metathesis Studies of a Family of Ruthenium Phosphonium Alkylidene Complexes," Inorg. Chim. Acta. 359 (9), 2658–2664 (2006).

8. P.E. Romero and W.E. Piers, "Direct Observation of a 14-Electron Ruthenacyclobutane Relevant to Olefin Metathesis," J. Am. Chem. Soc. 127 (14), 5032–5033 (2005).

9. C. W. Lee et al., "Impurity Reduction in Olefin Metathesis Reactions," US Patent Application US2005/0203324 A1 (Priority Date Aug. 23, 2004, released Sept. 15, 2005).

10. B.P. Paulson and R.L. Pederson, "Impurity Inhibition in Olefin-Metathesis Reactions," US Patent 6,900,347, issued May 31, 2005.

11. R.L. Pederson and B. P. Paulson, "Impurity Inhibition in Olefin-Metathesis Reactions," WO 02094748, A1 Priority Date May 24, 2001.

12. R.L. Pederson et al., "Applications of Olefin Cross Metathesis to Commercial Products," Adv. Synth. Catal. 344 (6–7), 728–735 (2002).

13. K.C. Nicolaou, A. Ortiz, and R.M. Denton, "Metathesis Reaction in the Synthesis of Complex Molecules," Chem. Today 25 (5), 70–76 (2007).

14. D.J. Wallace et al., "A Double Ring Closing Metathesis Reaction in the Rapid, Enantioselective Synthesis of NK-1 Receptor Antagonists," Org. Lett. 3 (5), 671–674 (2001).

15. R.M. Kanada et al., "Total Synthesis of the Potent Antitumor macrolides Pladienolide B and D," Angew. Chem., Int. Ed. 46 (23), 4350–4355 (2007).

16. P. Schwab, R.H. Grubbs, and J.W. Ziller, "Synthesis and Applications of RuCl2 (=CHR')(PR3)2: The Influence of the Alkylidene Moiety on Metathesis Activity," J. Am. Chem. Soc. 118 (1), 100–110 (1996).

17. M. Scholl, S. Ding, C.W. Lee, and R.H. Grubbs, "Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazole-2-ylidene Ligands," Org. Lett. 1 (6), 953–956 (1999).

18. S.B. Garber et al., "Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts," J. Am. Chem. Soc. 122 (34), 8168–8179 (2000).

19. I.C. Stewart et al., "Highly Efficient Ruthenium Catalysts for the Formation of Tetrasubstituted Olefins via Ring-Closing Metathesis," Org. Lett. 9 (8), 1589–1592 (2007).

20. C.K. Chung and R.H. Grubbs, "Olefin Metathesis Catalyst: Stabilization Effect of Backbone Substitutions of N -Heterocyclic Carbene," Org. Lett. 10 (13), 2693–2692 (2008).


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here