Continuous Processing: Moving with or against the Manufacturing Flow - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Continuous Processing: Moving with or against the Manufacturing Flow
Fueled by a need to reduce costs and improve efficiencies, continuous processing may be the next paradigm shift in pharmaceutical manufacturing.

Pharmaceutical Technology
Volume 9, Issue 32, pp. 5258

Rationale for continuous processing
Additional factors need to be considered in evaluating potential economic gains. "Given the fact that many companies find themselves with excess capacity, the economic justification for a switch from batch to continuous is not straightforward," says Maddaluna. "It involves consideration of the operational benefits, write-off costs for excess capacity as well as strategic issues. The justification for investment in continuous operations is easier for new products or specialized processes where an investment is required anyway. For example, in the case of processes involving very active APIs or highly hazardous material, where a containment investment might be required, a fully contained continuous process is likely to be more economical than a batch process."

Others are more cautious on the benefits of continuous processing. "Until we are able to develop the science and technology to design reliable systems for continuous processing, it will be very difficult to say with certainty that continuous processing will improve manufacturing efficiency or cost," says Prabir K. Basu, executive director of the National Institute for Pharmaceutical Technology and Education (NIPTE). "Today, continuous processes look attractive compared with batch processes because the batch process is not well understood and optimized. There may be a misconception that just by changing to a continuous process all problems will be resolved. But, before one thinks of changing to a continuous process, the question must be asked whether the current batch process is fully understood."

Maddaluna, however, points to potentially achieving better process understanding in a continuous environment. "Process conditions can be more stable through achieving a steady state," he says. "Feedback and feed-forward controls can respond to variations in raw materials. More time and effort is required to design and develop a continuous process, therefore, the process and upset conditions are better understood."

Others agree. "Continuous processing allows quality to be built in the process, to measure in-line, and to adjust parameters to drive the critical quality attributes to the requested target levels," says Wim Van der Goten, sales director for GEA Pharma Systems Collette (Wommelgem, Belgium), a solid-dosage equipment manufacturer. "Current batch production techniques are very often inefficient and cannot manage variability of input material characteristics in a proper way. Therefore, batch processes often have reduced reliability and poor yields. A statistically disputable sampling system after every batch process step decides whether the product can be released for the next production step."

Testing and product release throughout the various steps in a batch manufacturing offer certain advantages. "In a batch process, since the batch is tested and validated, the amount of material at risk is only one blender full of material," says Maddaluna. "For a continuous process, the amount of material potentially at risk is the amount used during the length of time the processes run (i.e., hours, days, or weeks). This concern will likely be alleviated with the advent of PAT and process controllers."

Continuous processing also presents challenges in product homogeneity because of start-ups and shutdowns caused by equipment failures or other operational issues. "It is hard to establish criteria for when to start accepting the product and when to start rejecting. It is very hard to validate such processes," says Basu. "One of the NIPTE members has specific experience in a commercial pharmaceutical process where a semicontinuous filling process was shut down by FDA because of too many starts and stops. The process, equipment, and process-control systems should be very well designed, extremely reliable, and should produce consistent product to avoid frequent shutdowns for continuous processes to be successful."

Basu outlines other limitations of continuous processing for raw materials variation. "While a continuous process is designed to take care of small variations in the raw materials, it is difficult to design ahead of time and predict and control all types of variations and wide swings in the variation of raw materials," he says. "In such instances, a continuous process is more vulnerable than a batch process, where, for example, a PAT tool could be used and variables such as time of mixing can be adjusted to accommodate these types of variations. The raw materials need to be well characterized and variability understood, so that a robust continuous process can be designed."


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
View Results
Eric Langerr Outsourcing Outlook Eric LangerRelationship-building at Top of Mind for Clients
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerRisk Reduction Top Driver for Biopharmaceutical Raw Material Development
Jill Wechsler Regulatory Watch Jill Wechsler Changes and Challenges for Generic Drugs
Faiz Kermaini Industry Insider Faiz KermainiNo Signs of a Slowdown in Mergers
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here