A Fresh Coat: Innovation in Excipients - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

A Fresh Coat: Innovation in Excipients
Sophisticated excipient development, especially for coatings, is staying on top of new challenges and meeting expanding industry needs.


Pharmaceutical Technology
Volume 32, Issue 11, pp. 46-56

Coating functionality

Optimum functionality is a primary goal for many types of excipients. Take into account, for example, materials used in coating systems. The industry's basic needs in terms of functional coating are generally the same as they have always been. There is still demand for coating systems to aid in achieving various drug-release profiles while providing good flexibility, taste masking, adhesion, mechanical strength, and ability to withstand small variations in processing. Industry does not always agree, however, that these needs are actually being met. "Although the fundamental needs have not changed, needs are not currently being met satisfactory to the industry overall," says John Brown, marketing director at International Specialty Products (Wayne, NJ). "Those manufacturers have been able to work with what is available, but if you ask them they would tell you that it is not delivering 100% of what they are looking for. In some cases, it has been a product-driven market, so there is still a void. As the industry comes under a considerable amount of pressure because of cost savings, brand extension, and patent expiration, companies are looking to gain functionality."

There are several ways to increase the functionality of coating systems and other excipients, both for immediate-release and for modified-release purposes. The following describes a chemical and a statistical technique.

A polymer approach. Coatings are continuously improving in terms of the types of polymer systems, and excipient users and makers seek materials that will provide better performance at faster coating times. Hydroxypropyl methylcellulose (HPMC), for example, is one of the most commonly used polymers for tablet coating because of it forms films easily. However, the disadvantage with HPMC is that it has low flexibility, and brittle tablets with HPMC coatings may swell under the high humidity storage conditions present in some areas of the world. Swollen tablets then crack the coating. To avoid the effects of humidity, tablets must either be packaged in 100% sealed blisters, which require an expensive polymer or plastic foil as opposed to the typical PVC blisters that don't protect against humidity, or plasticizers must be added to the coating formula. However, as Folttmann observes, the disadvantage of plasticizers is that they may either migrate into the tablet core and interact with the active ingredient or they may migrate out of the film, outside of the tablet, making the coating brittle again.

In addition, aqueous coating polymers are spray dried, and the process time, energy, and amount of material required varies greatly, depending on the particular polymer used. For example, HPMC is diluted in water and then a plasticizer, color, and other materials are added before being sprayed onto tablets. However, only very low concentrations (~12%) of HPMC solution can be made, because when diluted in water, HPMC greatly increases the viscosity of the solution. Moreover, in a spray-drying coating process there is a lot of heat involved with the warm inlet air and the colder exhaust air and the energy that is used to remove the water. "When you work with a low concentration of a polymer such as HPMC, the spray process is rather long to get enough polymer onto the tablets, and you have to remove quite a lot of water to end up with a solid coating," explains Folttmann.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
23%
Oversee medical treatment of patients in the US.
14%
Provide treatment for patients globally.
7%
All of the above.
47%
No government involvement in patient treatment or drug development.
9%
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here