The Role of Dendrimers in Topical Drug Delivery - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

The Role of Dendrimers in Topical Drug Delivery
This review provides an update of how dendrimer technology is being applied to the development of novel systems for various topical delivery applications.

Pharmaceutical Technology
Volume 32, Issue 11, pp. 88-98

33. I.J. Majoros et al., "PAMAM Dendrimer-based Multifunctional Conjugate for Cancer Therapy: Synthesis, Characterization, and Functionality," Biomacromol. 7 (2), 572–579 (2006).

34. R. Wiwattanapatapee, L. Lomlim, and K. Saramunee. "Dendrimers Conjugates for Colonic Delivery of 5-aminosalicylic Acid," J. Controll. Rel. 88 (1), 1–9 (2003).

35. G.M. Dykes, "Dendrimers: A Review of their Appeal and Applications," J. Chem. Technol. Biotechnol. 76 (9), 903–918 (2001).

36. A.T. Florence, "Dendrimers: A Versatile Targeting Platform," Adv. Drug Del. Rev. 57 (15), 2104–2105 (2005).

37. S. Diekmann and T. K. Lindhorst, "Dendrimers," Rev. in Mol. Biotechnol. 90 (3–4), 157–158 (2002).

38. T. Goodson, O. Varnavski, and Y. Wang, "Optical Properties and Applications of Dendrimer-Metal Nanocomposites," Int. Rev. Phy. Chem. 23 (1) 109–150 (2004).

39. C .Dufes, I.F. Uchegbu, and A.G. Schatzlein, "Dendrimers in Gene Delivery," Adv. Drug. Del. Rev. 57 (15), 2177–2202 (2005).

40. R. Esfand and D.A. Tomalia, "Poly(amidoamine) (PAMAM) Dendrimers: From Biomimicry to Drug Delivery and Biomedical Applications," Drug Disc. Today 6 (8), 427–436 (2001).

41. V.J. Venditto, C.A. Regino, and M.W. Brechbiel, "PAMAM Dendrimer Based Macromolecules as Improved Contrast Agents," Mol. Pharm. 2 (4), 302–311 (2005).

42. N. Zhu et al., "PAMAM Dendrimers-Based DNA Biosensors for Electrochemical Detection of DNA Hybridization," Electroanalysis 18 (21), 2107–2114 (2006).

43. N. Bourne et al., "Dendrimers, a New Class of Candidate Topical Microbicides with Activity against Herpes Simplex Virus Infection. Antimicrobial Agents and Chemotherapy," Antimicrob. Agents Chemother. 4 (9) 2471–2474 (2000).

44. H. Zhong et al., "Studies on Polyamidoamine Dendrimers as Efficient Gene Delivery Vector," J. Biomat. Appl. 22 (6), 527–544 (2008).

45. A. Gerald, M.R. Ashton, and E. Khoshdel, "Hydroxyl-Functionalized Dendritic Macromolecules in Topical Cosmetic and Personal Care Compositions, US Patent 6,582,685, June 23, 2004.

46. F. Tournilhac and S. Pascal, "Cosmetic or Dermatological Topical Compositions Comprising Dendritic Polyesters," US Patent 6,287,552, Sept. 11, 2001.

47. B. Wolf, S. Florence, "Cosmetic Compositions Having Keratolytic and Anti-Acne Activity," US Patent 5,449,519, Sept. 12, 1995.

48. S. Kluijtmans and J.B. Bouwstra, "Dendrimer-Aminobutadiene-Based UV-Screens, European patent 1,784,455, May 16, 2007.

49. W.S. Bahary and M. P. Hogan. "Cleansing Compositions with Dendrimers as Mildness Agents," US Patent 5,658,574, Aug. 19, 1997.

50. S. Forestier, I. Rollat-Corvol, "Deodorant Composition and Use Thereof," US Patent 6,001,342, Dec. 14, 1999.

51. D. Allard and S. Forestier, "Self-Tanning Cosmetic Compositions," US Patent 6,399,048, June 4, 2002.

52. T. F. Vandamme and L. Brobeck, "Poly(amidoamine) Dendrimers as Ophthalmic Vehicles for Ocular Delivery of Pilocarpine Nitrate and Tropicamide," J. Control. Rel. 102 (1), 23–38 (2005).

53. S. Shaunak et. al., "Polyvalent Dendrimer Glucosamine Conjugates Prevent Scar Tissue Formation," Nature Biotechnol. 22 (8), 977–984 (2004).

54. R. J. Marano et al., "Dendrimer Delivery of an Anti-VEGF Oligonucleotide into the Eye: A Long-Term Study into Inhibition of Laser-Induced CNV, Distribution, Uptake, and Toxicity," Gene Ther. 12 (1), 1544–1550 (2005).

55. Y. Cheng et al., "Transdermal Delivery of Nonsteroidal Anti-Inflammatory Drugs Mediated by Polyamidoamine (PAMAM) Dendrimers," J. Pharm. Sci. 96 (3), 595–602 (2007).

56. A. S. Chauhan et al., "Dendrimer-Mediated Transdermal Delivery: Enhanced Bioavailability of Indomethacin," J. Control. Rel. 90 (3), 335–343 (2003).

57. "Starpharma Reports Positive Vivagel Clinical Study Results," Starpharma Holdings Limited (Melbourne, Australia), available at, accessed Oct. 13, 2008.

58. "Avidimer Technology Overview," Avidimer Therapeutics (Ann Arbor, MI), available at, accessed Oct. 13, 2008.

59. Nanotechnology Characterization Laboratory, National Cancert Institute, "Dendrimer-Based MRI Contrast Agents," (Frederick, MD, Dec. 2006), available at, accessed Oct. 13, 2008.

60. "Starburst PAMAM Dendrimers," Dendritic Nanotechnologies Inc. (Mount Pleasant, MI), available at, accessed at Oct. 13, 2008.

61. NanoJuice Transfection Reagent Kit, EMD Biosciences (Gibbstown, NJ), available at, accessed Oct. 13, 2008.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here