Science and Technology of Bioadhesive-Based Targeted Oral Delivery Systems - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Science and Technology of Bioadhesive-Based Targeted Oral Delivery Systems
Novel hydrophobic bioadhesive polymers and dosage designs are now available to effectively achieve tailored release kinetics of a broad range of drugs to meet the clinical needs.

Pharmaceutical Technology
Volume 32, Issue 11, pp. 100-121

Prerequisites for successful bioadhesive oral dosage form

The promise of bioadhesive-based oral delivery systems has fostered numerous investigations with limited success. Different types of transmucosal oral systems have been explored using various bioadhesive polymers. A majority of these systems are based on hydrophilic hydrogel polymers and are designed primarily for buccal or sublingual applications. When these hydrophilic polymers are used for oral bioadhesive systems for drug delivery in the GIT, they typically hydrate prematurely upon contact with the stomach contents before developing interactions with the mucosal surface. In the event that some weak interactions do occur, these systems cannot withstand the high turbulence of the stomach environment, and the result is premature emptying. Therefore, although the range of hydrophilic bioadhesive polymers and their application in various low-turbulence conditions is quite broad, their usefulness in oral dosage forms, especially in designing of systems for systemic delivery, is generally limited.

Table I: Bioadhesive oral drug delivery systems used in various human trials. (ALL FIGURES AND TABLES ARE COURTESY OF THE AUTHOR.)
An ideal bioadhesive oral dosage form must meet several prerequisites to be successful. The first prerequisite to target a gastrointestinal site is that the behavior of the dosage form must be reproducible. Although many bioadhesive polymers have exhibited promising results in vitro and in vivo in animals, few benefits have been shown in human trials. The results of human clinical trials with bioadhesive oral dosage forms are summarized in Table I. Recently, Säkkinen evaluated the passage and retention of chitosan granules in the small intestine by gamma-scintigraphy in fasted human volunteers (14). Although chitosan showed marked bioadhesive capabilities in vitro, retention of the chitosan formulation in the upper small intestine was not sufficiently reproducible, and the duration of retention was similar to lactose granules used as a control. In developing a site-specific bioadhesive system for furosemide, a model drug with a narrow absorption window in the upper GIT, administration of furosemide in chitosan granules resulted in bioavailability lower than that from a conventional immediate-release formulation, thereby indicating that the bioadhesive formulation could not be retained long enough in the upper GIT in humans (15).

The second prerequisite for a bioadhesive system is that it should rapidly attach to the mucosal surface and maintain a strong interaction to prevent displacement. Spontaneous adhesion of the system at the target site is critical and can be achieved through bioadhesion promoters that use tethered polymers (16). Contact time should also be sufficiently long at the target site, normally longer than that needed for complete drug release. As hydrophilic bioadhesive polymers tend to lose adhesiveness upon hydration, restricted hydration and formation of a rigid gel network would be desirable for prolonged adhesion (17). A short retention time, in relation to the drug release rate, will compromise bioavailability.

The third prerequisite for a successful and effective bioadhesive system is that the bioadhesion performance should not be impacted by surrounding environmental pH. Studies have shown that the bioadhesiveness of polymers with ionizable groups are affected by surrounding pH. For example, polyacrylic acid is more bioadhesive when the majority of the carboxylic acid groups are in the ionized state. Polyanhydride-based hydrophobic bioadhesive polymers (e.g., Spheromers, Spherics, Mansfield, MA) undergo erosion that is mainly affected by the aqueous environment and not by pH of the surrounding medium. Studies have shown that as anhydride-based polymers degrade at the mucus surface, carboxylic acid groups are formed at the transected polymer chain ends, which generate a new polymer surface rich in carboxylic acid end groups (18). These hydrophilic functional groups then form hydrogen bonds with surrounding mucin strands that in turn penetrate the newly created surfaces. The result is the formation of both chemical and mechanical bonds. As the degradation process proceeds, a more porous surface rich with carboxyl groups is created, allowing for even greater adhesion that is essential to the success of an oral bioadhesive system. In earlier studies, one family of rapidly degradable polyanhydrides [poly (FA:SA)] produced bioadhesive interactions with rat small intestine tissue that were substantially stronger than all other polymers in this class (18). The fact that these bioadhesive polymers are stable in the acidic environment of the stomach and eventually degrade at pH ≥7.4, make them ideal for targeted delivery to the stomach and small intestine (19).


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here