Science and Technology of Bioadhesive-Based Targeted Oral Delivery Systems - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Science and Technology of Bioadhesive-Based Targeted Oral Delivery Systems
Novel hydrophobic bioadhesive polymers and dosage designs are now available to effectively achieve tailored release kinetics of a broad range of drugs to meet the clinical needs.

Pharmaceutical Technology
Volume 32, Issue 11, pp. 100-121

Bioadhesive delivery system options

Several investigators have explored unique design concepts in an effort to enhance retention of bioadhesive dosage forms in the GIT. These novel bioadhesive dosage forms include solutions, suspensions, gels, powders, microparticles or nanoparticles, pellets, patches, and tablets (including minitablets and multilayer tablets). During the development of a bioadhesive delivery system, the focus should be not only to achieve the desired therapeutic outcome but also to overcome the unfavorable environmental condition and challenges found in various regions of the GI tract.

Solution, suspension, and gel-forming liquids. Viscous bioadhesive liquids have been investigated primarily to coat the esophagus to act as a protectant or a vehicle for drug delivery for the treatment of local disorders, including motility dysfunction, fungal infections, and esophageal cancer. For the treatment of GERD and other esophageal disorders, a delivery system retained within the lower esophagus would be highly desirable (46). Using sodium alginate suspension as a novel bioadhesive liquid, researchers showed that the esophageal surface can be coated to protect against refluxate and can deliver therapeutic agents to the damaged mucosa (28, 47). The bioadhesive gel of δ-5-aminolevulinic acid for local action within the esophagus has been investigated (48). The retention behavior of various bioadhesive formulations was evaluated on the esophageal surface under conditions mimicking the saliva flow. Both polycarbophil and xanthum gum demonstrated excellent bioadhesive potential, and carmellose sodium and theromosensitive poloxamer (Lutrol 407) demonstrated poor retention. Recent work by Potts has examined the esophageal retention of liquid formulations of Smart Hydrogel (GelMed, Lexington, MA), a thermosensitive hydrogel of poloxamer covalently linked to polyacrylic acid and carbopol. This "esophageal bandage," upon oral administration, demonstrated significant retention within the esophagus (49).

Figure 9: An everted sac of rat jejunum incubated with Spheromer-coated microspheres, adhering to the mucosal surface, after washing three times (52). (ALL FIGURES AND TABLES ARE COURTESY OF THE AUTHOR.)
Multiparticulates, microparticles, and nanoparticles. Oral delivery systems based on multiparticulates, microparticles, and nanoparticles often exhibit improved performance in comparison with monolithic matrix tablets. By diffusing into the mucous gel layer by virtue of their relatively small size, these small immobilized carriers show a prolonged gastrointestinal residence time (50, 51). Figure 9 shows Spheromer-coated beads adhering to the mucosal layer of everted rat jejunum. Studies have shown that these beads make a rapid interaction with the mucosal surface and form a strong and long-lasting adhesive interaction (52). Rapid degradation of these polymers on the surface generates new carboxylic acid groups that further aid in bioadhesion. Recent work has shown that, in addition to size and chemistry, shape is also a critical feature of bioadhesive drug delivery particles and can dictate particle velocity, diffusion and adhesion to the mucus surface in a complex manner (53).

Figure 10: AUC and Cmax values following oral gavage administration of micronized (stock) paclitaxel, non-bioadhesive paclitaxel formulation, and bioadhesive paclitaxel formulation in rats (57). (ALL FIGURES AND TABLES ARE COURTESY OF THE AUTHOR.)
Fine particles of ion-exchange resins display bioadhesive properties as a result of interactions between the highly charged surface of polymers and the mucus (54). The residence time of cholestyramine, an anionic-exchange resin, was explored in fasting and fed human subjects by gamma-scintigraphy. This study showed that materials with adherent properties can resist the housekeeper sequences in the fasted subjects and will not be dislodged by food in the fed state. Contrary to conventional wisdom, this study revealed that charge-based interactions associated with ion-exchange resins play a minor role and only a small percentage of resin particles (approximately 20%) that made contact with the stomach lining were retained over an extended duration (55).


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here