Considerations on Re-Use of Sterilizing-Grade Filters - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Considerations on Re-Use of Sterilizing-Grade Filters
The author examines re-use of hydrophilic- or hydrophobic-membrane sterilizing-grade filters in liquid sterilizing applications.


Pharmaceutical Technology


Applications of re-use in liquid service

In addition to process conditions, the risk of re-use, including the criticality of the filtration process, should be assessed for each application. Some processes may be considered less critical than others and may not require the highest levels of sterilization assurance. Such processes use sterilizing-grade filters for particulate and/or bioburden control but do not claim sterility of the effluent. In these applications, a user may consider re-use of those filters more aggressively. Other processes require a reasonable level of sterilization assurance, suggesting greater risk in re-use. The most critical applications require the highest levels of sterilization assurance achievable and are often done by combining sterilizing-grade filters with effluent from bioburden control filters and, in some cases, use of serial filtration with double 0.2 μm, 0.2 μm to 0.1 μm, or double 0.1 μm sterilizing-grade filters. With such redundancy, there may be a balance between re-use of upstream filters and single use of final filters, or re-purposing of prior batch final filters as upstream filters for subsequent batches. In each case, any perceived economic advantage to re-use of the filters should be weighed against the risk of failure, which can be caused by premature plugging, loss of integrity, increased leachable contamination, or bacterial penetration.

Examples of applications for sterilizing-grade filters used as either nonsterilizing particle or bioburden control filters or as sterilizing filters, or both, include filtration of:

  • Fermenter or cell-culture bioreactor culture media
  • Fermenter or bioreactor additives
  • Serum for cell culture media
  • Process water
  • Chromatography buffers
  • Diafiltration buffers
  • Solvents
  • Disinfectants
  • Intermediate product hold
  • Nonsterile active pharmaceutical ingredients (APIs)
  • Final bulk sterile APIs
  • Sterile culture media for aseptic filling validation
  • Terminally sterilized injectables
  • Aseptically filled sterile injectables
  • Aseptically filled sterile topicals and ophthalmics.

Each of these applications has its own requirements and risk factors for bioburden control and/or sterilizing filtration. In addition to the conditions of re-use (rinsing, cleaning, resterilization, drying), each application for re-use should be considered independently based on its criticality for sterilization assurance and any other influence on the filtered effluent.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
30%
Attracting a skilled workforce
27%
Obtaining/maintaining adequate financing
14%
Regulatory compliance
30%
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatcchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Obama Administration Halts Attack on Medicare Drug Plans
Source: Pharmaceutical Technology,
Click here