Formulation of Sustained-Release Ketorolac Tromethamine Pellets - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Formulation of Sustained-Release Ketorolac Tromethamine Pellets
The authors evaluated the effect of polymer composition on the drug-release profile and the effect of storage conditions on dissolution characteristics.


Pharmaceutical Technology
Volume 32, Issue 12, pp. 58-61

References

1. USP-DI (United States Pharmacopeial Convention Inc., 17th ed., Rockville, MD, 1997), p. 1788.

2. Physician's Desk Reference (Thomson PDR, 57th ed., Montvale, NJ, 2003), p. 2942.

3. M. Mori et al., "Prolongation of Antipyretic Action and Reduction of Gastric Ulcerogenicity in the Rat by Controlled-Release Granules of Bermoprofen, a New Nonsteroidal Anti-Inflammatory Drug," J. Pharm. Sci. 80, 876–880 (1991).

4. J. Rovensky and D. Micekova, "Six-Month Prospective Study to Monitor the Treatment of Rheumatic Diseases with Sustained-Release Flurbiprofen," Drug. Exp. Clin. Res. 26, 19–24 (2000).

5. T. Lee and J.R. Robinson, "Controlled-Release Drug-Delivery Systems," in Remington: The Science and Practice of Pharmacy (Lippincott Williams & Wilkins, 20th ed., Baltimore, MD, 2000), pp. 903–904.

6. L. Genc and N. Hegazy, "Sustained-Release Wax Matrix Formulations of Ketorolac Tromethamine with Compritol 888 ATO and HD 5 ATO," Acta Pharm. Turcia 42, 39–45 (2000).

7. D.M. Brahmankar, R.M. Karwa, and S.B. Jaiswal, "Cellulose Matrices for Controlled Release of Ketorolac Tromethamine," Indian Drugs 33, 120–123 (1996).

8. N. Vatsaraj, H. Zia, and T. Needham, "Formulation and Optimization of a Sustained-Release Tablet of Ketorolac Tromethamine," Drug Delivery 9, 153–159 (2002).

9. A.P. Rokhade et al., "Semi-Interpenetrating Polymer Network Microspheres of Gelatin and Sodium Carboxymethyl Cellulose for Controlled Release of Ketorolac Tromthamine," Carbohydrate Polymers 65, 243–252 (2006).

10. K. Ruckmani, M.S. Muneera, and R. Vijaya, "Eudragit Matrices for Sustained Release of Ketorolac Tromethamine and Kinetics of Release," Bollettino Chimico Farmaceutico 139, 205–208 (2000).

11. E.A. Hosny, A.A. Al-Helm, and E.M. Niazy, "In Vitro and In Vivo Evaluation of Commercial and Microcapsulated Sustained-Release Tablets Containing Diclofenac Sodium," Saudi Pharm. J. 6, 65–70 (1998).

12. M. Khan, J. Dib, and I.K. Reddy, "Statistical Optimization of Ketoprophen-Eudragit S-100 Coprecipitates to Obtain Controlled-Release Tablets," Drug Dev. Ind. Pharm. 22, 135–141 (1996).

13. C. Ho and G.C. Hwang, "Development of Extended-Release Solid Dispersions of Nonsteroidal Anti-Inflammatory Drugs with Aqueous Polymeric Dispersions: Optimization of Drug Release via a Curve-Fitting Technique," Pharm. Res. 9, 206–210 (1992).

14. J. Staniforth, "Powder Flow," in Pharmaceutics: The Science of Dosage Form Design, M.E. Aulton, Ed. (Churchill Livingstone, 2nd ed., Edinburgh, Scotland, 2002), pp. 205–207.

15. USP 26–NF 21 (United States Pharmacopeial Convention Inc., Rockville, MD, 2002), pp. 978–980.

16. R.K. Chang and A.J. Shukla, "Polymethacrylates," in Handbook of Pharmaceutical Excipients, R.C. Rowe, P.J. Shesky, and P.J. Weller, Eds. (Pharmaceutical Press, 4th ed., London, England, 2002), pp. 462–468.

17. L. Genc, E. Guler, and N. Hegazy, "Film-Coated Enteric Tablet Formulation of Ketorolac Tromethamine," Drug Dev. Ind. Pharm. 23, 1007–1011 (1997).

18. T. Higuchi, "Mechanism of Sustained Action Medication. Theoretical Analysis of Rate Release of Solid Drugs Dispersed in Solid Matrices," J. Pharm. Sci. 52, 1145–1149 (1963).

19. M. Donbrow, and S. Benita, "Release Kinetics of Sparingly Soluble Drugs from Ethyl Cellulose–Walled Microcapsules: Salicylamide Microcapsules," J. Pharm. Pharmacol. 34, 547–551 (1982).

20. Z. Qiu et al., "Effect of Milling and Compression on the Solid-State Maillard Reaction," J. Pharm. Sci. 94, 2568–2580 (2005).

21. R.C. George et al., "Investigation into the Yellowing on Aging of Sabril Tablet Cores," Drug Dev. Ind. Pharm. 20, 3023–3032 (1994).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
23%
Oversee medical treatment of patients in the US.
14%
Provide treatment for patients globally.
7%
All of the above.
47%
No government involvement in patient treatment or drug development.
9%
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here